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1. INTRODUCTION 
 
Over the last 150 years, approximately 90% of the tidal marshes that fringed San Francisco Bay have 
been destroyed as a result of progressive diking and filling for agricultural, salt pond, and commercial 
development. Within the last three decades, however, there has been a dramatic change in public attitudes 
towards wetlands. They are now valued as uniquely productive natural resources and public policy now 
seeks not only to protect existing marshes, but also to restore former marshes as functioning wetland 
ecosystems.  
 
Accordingly, The Bay Institute, with funding from the California State Coastal Conservancy, retained 
Philip Williams & Associates, Ltd. (PWA) and Phyllis M. Faber (Consultant Team) to evaluate and 
document actual restoration experience in San Francisco Bay and produce this design guidelines report. 
 
The focus of this work is necessarily limited to: 
 
• San Francisco Bay; 
 
• saline tidal marshes fully connected to the Bay, excluding managed wetlands; 
 
• addressing pragmatic practical design questions often encountered in restoration practice—as 

opposed to scientific research or regulatory compliance questions;  
 
• advice based upon experience and observation; the guidelines are neither regulation nor specification. 
 
The report’s target audience is all individuals who have some degree of responsibility for decisions made 
on tidal wetland restoration design, including regulatory agency staff, land managers, resource managers 
and restoration practitioners. 
 
We recognize that restoration practice—as well as restoration science—is continually evolving, with 
considerable uncertainties and unknowns. The guidance described in this report is based upon 
observations and experience from monitoring the evolution of restored sites. There are uncertainties 
related to wetland restoration and there are new approaches, untried as of yet, that need to be explored. 
We have highlighted these uncertainties and have suggested avenues of research to address them in 
Section 5. For this reason we see this report as a “living document” and have termed it the 2004 Version.1 
We anticipate that new insights will be provided in future years by continued monitoring data from 
restored sites and from the results of the CALFED-funded BREACH and IRWM research studies. At 
some point, we hope there will be an opportunity to update this version. 
 

                                                      
1 We acknowledge the San Francisco Bay Conservation and Development Commission (BCDC) had the foresight to 
produce an initial design guidelines report at the outset of the restoration era, which could be termed the 1983 
Version (see Harvey, H. T. and P. B. Williams (1983). California Coastal Salt Marsh Restoration Design. ASCE 
Third Symposium on Coastal and Ocean Management, Coastal Zone 83.). 
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Since the early 1970s, over 45 tidal marsh restoration projects have been constructed around the Bay, 
restoring tidal action to more than 1,130 hectares (2,800 acres) (WRMP 2003). Over the next 20 years, 
with current initiatives being implemented, it is likely that thousands more hectares will be restored to 
tidal action (Steere and Schaefer 2001). Early restoration projects have been implemented by a variety of 
different entities, with widely different planning approaches and designs. Unfortunately, monitoring of 
the long-term evolution and performance of these “experimental” or first generation restoration sites was 
rarely carried out. This has impeded our collective ability to answer key practical design questions 
(Williams and Faber 2001). 
 
Fortunately, in 1986, with the support of local foundations and citizens groups (Marin Community 
Foundation, San Francisco Foundation, Fred Gellert Family Foundation, and Marin Audubon Society) 
Phyllis M. Faber and PWA were able to initiate the first long-term monitoring of two restored sites in San 
Francisco Bay, at Muzzi Marsh and the Warm Springs Marsh (also referred to as Coyote Creek Lagoon). 
In later years, long-term monitoring was initiated in more restored sites, notably Sonoma Baylands by 
PWA for the U.S. Army Corps of Engineers (USACE) in 1994, Carl’s Marsh by Stuart Siegel in 1996, 
Crissy Field Marsh by the National Parks Conservancy in 1999, Martin Luther King Marsh by Wetlands 
and Water Resources (WWR) for East Bay Regional Parks, and Cooley Landing for U.S. Fish and 
Wildlife Service (USFWS) in 2000. Table 1 and Figure 1 describe the characteristics and location of these 
monitoring sites and other restoration sites referenced in this report.  
 
A Scientific Review Committee (see acknowledgements) oversaw the development of the guidelines. The 
committee met with the Consultant Team twice (February 2003 and June 2004). At the beginning of the 
project, the contents and methodology were presented and discussed with the committee. The 
Committee’s comments on later drafts were considered and incorporated into the final draft. 
 
The Bay Institute organized and facilitated a workshop (November 2004) to solicit feedback on the final 
draft from a wider audience. The workshop included restoration scientists from management agencies and 
non-governmental organizations in addition to the scientific review committee.  
 
We have structured this report to identify and assess key design issues. We do this by: 
 

1. Explaining our conceptual model of how restored marshes evolve and function based on our own 
observations and other researchers’ assessments of restored marshes (Zedler 2000; Zedler and 
Callaway 1999).  

 
2. Describing the planning context used in restoration practice that creates the framework for 

design decisions and considering site-specific factors as well as geographic variability in the 
environmental setting and variation in project objectives. 

 
3. Addressing the major design questions that dictate the grading of the site template prior to 

reintroduction of tidal action. 
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Electronic appendices that contain detailed monitoring data from a number of marshes around San 
Francisco Bay have been provided. These data were used to support the guidance described in this report 
and include China Camp, Muzzi Marsh, Warm Springs Marsh, and Sonoma Baylands. The full report can 
be downloaded at the Wetland Regional Monitoring Program website (www.wrmp.org). 
 
Vertical elevations are reported relative to the North American Vertical Datum of 1988 (NAVD) or the 
appropriate tidal datum. Most of the original elevations were collected in the National Geodetic Vertical 
Datum of 1929 (NGVD) and have subsequently been converted using Corpscon (USACE 2000). The 
datum conversions are therefore approximate. Close attention should be taken to the correct specification 
and use of vertical datums in restoration projects. 
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Table 1. Examples of Restoration Sites in San Francisco Bay 

 
Site Previous Land 

Use 
Salinity 
Regime 

Area 
(ha) 

Date 
Breached 

Initial 
Elevation 

(m NAVD) 

Time to 50% 
Vegetative Cover 

(years) 

Tidal Slough 
System 

Long-Term 
Monitoring 

Muzzi, Inner Dredged 
material 

placement 

Saline 28 1976 
2.15 

~5 Channels 
excavated; no 

natural channel 
formation 

1986 - present 

Muzzi, Outer Diked bayland Saline 20 1976 
1.27 

~14 Extensive 
channels 

1986 - present 

Warm Springs 
(Coyote Creek 
Lagoon) 

Deep borrow 
pit 

Brackish 81 1986 
-3.74 

>14 Mudflat channels 
developing 

1986 - present 

Carl's Marsh 
(Petaluma River 
Marsh) 

Agricultural 
land 

Saline 18 1994 
-0.10 

>6 Developing 1996 - present 

Sonoma 
Baylands 

Diked bayland Saline 120 1996 
1.21 

>8 Developing 1994 - present 

Faber Tract Dredged 
material 

placement 

Saline 32 1972 
1.75 

(+1.63 to 

+2.12) 

Less than 
5 to 10 

(estimate) 

No channels in 
highest areas; 

extensive 
channels in lower 

areas 

--- 

Alameda Creek 
Pond 3 

Dredged 
material 

placement 

Saline 45 1975 
+1.73 to 

+2.34 

≤5 Few channels in 
the highest areas; 

slightly more 
channels in the 

lower areas 

--- 

Crissy Field Airfield Saline 7 1999 
-0.37 

Not vegetated Lagoon inlet 
channel closes 
intermittently 

1999 - present 

Martinez Landfill Saline 5 2002 
1.3 

>3 Pr-excavated 2002 - present 

Cooley Landing Salt pond Saline 39 2000 
1.52 >5 Evolving 2000 - present 

Napa Pond 2A Salt pond Brackish to 
Saline 

223 1995 
1.73 

~3 Re-established in 
remnant channels 

1997 - present 

Martin Luther 
King Jr. 

Filled, diked 
bayland 

Saline 35 1998 
1.54 

4 Developing 1998 - present 
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2.  EVOLUTION OF SAN FRANCISCO BAY WETLANDS 
 
2.1 WHAT IS A TIDAL WETLAND? 
 
Tidal wetlands are the margins of the estuary that are periodically inundated by tides. Therefore, they 
include all habitats within the “tidal frame” (the elevation range between the lowest and highest tides). 
 
These are: 
 

• intertidal mudflats; 
 

• regularly inundated tidal marsh plain; 
 

• tidal channels within the marsh; and 
 

• infrequently inundated wetland-upland transition zones at the edge of the upland. 
 
The major focus of this report, and of restoration planning, is to develop the conditions that result in the 
restoration of vegetated tidal marsh habitat within tidal wetlands, incorporating the wetland-upland 
transition or ecotone within the site boundaries wherever possible. This report does not consider terrestrial 
ecotones such as hillslopes, alluvial fans, deltas, and beach ridges that lie outside of the site boundaries 
(which are typically the top of the levees). The design questions in this report address the creation of the 
form or the physical setting that allows the development of a wetland with all the ensuing functions of an 
estuarine ecosystem such as nutrient cycling, food production, habitat for estuarine fish, and resting and 
feeding grounds for shorebirds and waterfowl. 
 
A typical mature tidal salt marsh in San Francisco Bay today has a distinctive vertical profile as shown in 
Figure 2. This figure shows a transition from intertidal mudflat up a relatively short and steep low marsh 
zone of Pacific cordgrass (Spartina foliosa) to a wide middle marsh zone dominated by perennial 
pickleweed (Salicornia virginica) and a high marsh zone dominated by saltgrass (Distichlis spicata). The 
high marsh transitions into upland in what we are calling a “wetland-upland transition zone”. This area, 
which varies spatially in response to annual rainfall, storm surges, and sea level rise, has been almost 
entirely eliminated around the Bay by roadways and dike construction. Where fragments remain, it serves 
as critical habitat and refugia for several species, most notably the salt marsh harvest mouse 
(Reithrodontomys raviventris) and the California black rail (Laterallus jamaicensis corturniculus). It also 
serves as a buffer from landward intrusions of human influences including cats and dogs and predators 
such as the red fox. 
 
In addition to the most common plants—pickleweed, cordgrass, and saltgrass—a diverse assemblage of 
tidal marsh salt tolerant plants (halophytes) includes: jaumea (Jaumea carnosa), alkali-heath (Frankenia 
salina), fat-hen (Atriplex triangularis), sea lavender (Marsh rosemary) (Limonium californicum), and 
gumplant (Grindelia stricta var. angustifolia). Gumplant grows in the high marsh zone and along channel 
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banks throughout the marsh. A parasitic plant, dodder (Cuscuta salina), sometimes establishes in 
pickleweed marshes, particularly where tidal flushing is depressed. Large patches of alkali-heath and 
creeping wild rye (Lolium perenne) are common in areas of transition to upland vegetation along with 
introduced rabbitfoot grass (Polypogon monspeliensis). Rare plant species of tidal salt marshes include 
soft bird’s-beak (Cordylanthus mollis ssp. mollis), Point Reyes bird’s-beak (Cordylanthus maritimus ssp. 
palustris), California sea-blite (Suaeda californica), Marin knotweed (Polygonum marinense), and small 
spikerush (Eleocharis parvula). 
 
The distribution of species changes, particularly in the upper marsh, in response to annual rainfall and 
weather patterns and interspecific plant competition. Physical limitations tend to play a greater role in 
species distribution in lower elevation zones and interspecific plant competition at higher elevation zones 
(Russell et al. 1985; Bertness 1991; Pennings and Callaway 1992). Faunal diversity depends on the many 
functions that vegetation provides, such as food, cover, and resting sites; thus, canopy architecture plays a 
role in ecosystem function. Species rich marshes exhibit greater layering of the canopy (Keer and Zedler 
2002). The Goals Project lists distribution and abundance of selected native vascular plant species 
occurring in tidal marshes of the San Francisco Bay Estuary (Goals Project 1999, Table 1.3).  
 
The zones are readily observable with patterns of vegetation distribution linked primarily by the depth, 
duration, and frequency of tidal inundation (the hydroperiod or inundation regime), drainage 
characteristics, and by the local salinity regime. Vascular plant distribution is strongly influenced by a 
salinity gradient in the Bay that varies seasonally and by landforms (creeks, open bays, etc.) (Hinde 1954; 
Atwater and Hedel 1976; Grossinger 1995). Tidal channels influence the distribution and composition of 
vegetation. Significant increases in species richness occur along channel banks; species richness 
decreases with distance from channel banks and with decreasing channel size (Sanderson et al. 2000). 
 
Over the long-term, the biota of salt marshes in San Francisco Bay have responded to changes in sea level 
by increased accretion rates and by shifts in vegetation, from high to low marsh assemblages (Watson 
2004). Vegetation itself plays an important role in increased accretion rates through slowing water 
velocity and contributing organic matter to sediment accumulation. Large plants like cordgrass, bulrush, 
and cattails produce larger amounts of detritus and organic matter that effect sedimentation dynamics as 
well as the biologically mediated processes of nutrient and carbon cycling, and food web and habitat 
support for both plants and animals. 
 
Vegetation patterns in the Bay changed in response to the diversion of fresh water for agricultural use in 
the 19th and 20th centuries, which resulted in conditions that are more saline for the Bay. Since this use is 
now regulated and restricted, conditions that are more brackish appear to be developing, particularly in 
the South Bay. The rare, small spikerush, a plant found in brackish conditions, has established both at 
Warm Springs in Fremont and at Bahia in the North Bay.  
 
Species inhabiting tidal wetlands must possess special adaptations that enable transpiration of water from 
a salty environment and special mechanisms to dispose of salt. Below mean high water (MHW), daily 
tidal flooding maintains saturated anoxic soils and salinities close to those of tidal waters, which creates 
conditions suitable for cordgrass. In San Francisco Bay, Pacific cordgrass withstands tidal submergence 
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of up to 17 hours per day. Typically, Pacific cordgrass colonizes accreting mud flats and dominates the 
low marsh. 
 
Where substrate is particularly soft due to rapid accretion or puddled water, the annual form of 
pickleweed (Salicornia europaea) may colonize first. Through evapotranspiration, annual pickleweed 
solidifies the substrate sufficiently for cordgrass or perennial pickleweed to establish and out-compete the 
annual form. Above MHW and particularly above mean higher high water (MHHW), less frequent tidal 
flooding results in wider salinity fluctuations and less moist but more oxygenated soil conditions, which 
are more suitable for several salt marsh species but primarily perennial pickleweed. 
 
Brackish marshes are transitional between freshwater and salt marshes. While there is a recognizable 
brackish flora of alkali bulrush (Scirpus maritime), California bulrush (tule) (Scirpus californicus), and 
cattails (Typha spp.), their distribution on the marsh depends on fluctuating salinity conditions. In years of 
heavy rainfall, brackish species extend their range and in years of drought the trend is reversed. Species 
diversity increases markedly in brackish marshes. The seed bank of a tidal salt marsh in San Pablo Bay is 
an order of magnitude smaller than in a freshwater marsh (Hopkins and Parker 1984). 
 
The flora found in the Suisun Marsh, where there is significantly less salt because of freshwater flows 
from the Sierra Nevada, is much more diverse than the marsh flora near the Golden Gate (Newcombe and 
Mason 1972; Baye et al. 2000).  Characteristic dominant plant species in brackish marshes include alkali 
bulrush, California bulrush, and cattails. California bulrush and cattails tolerate deeper flooding in non-
tidal wetlands and grow near mean low water (MLW) in the intertidal zone. Common tule (Hardstem 
bulrush) (Scirpus acutus), Baltic rush (Juncus balticus), silverweed (Potentilla anserine ssp. pacifica), 
jaumea, and saltgrass are all common in brackish conditions (Atwater and Hedel 1976, Atwater et al. 
1979). Plant species found in the transitional areas of brackish marshes—once more common but rare 
today—include Suisun Marsh aster (Aster lentus), Suisun thistle (Cirsium hydrophilum var. 
hydrophilum), soft bird's-beak, Delta tule pea (Lathyrus jepsonii var. jepsonii), Mason's lilaeopsis 
(Lilaeopsis masonii) and mudwort (Limosella subulata) (Table 3.2, Goals Project 1999).  
 
The extent and location of salt and brackish marshes within San Francisco Bay depends on the tidal and 
salinity regime. From the Golden Gate, the diurnal range diminishes upstream towards Suisun Bay and 
increases through the South Bay. The Bay can be disaggregated longitudinally into sequential geographic 
zones (Figure 3). What is referred to as the Northern Reach of the Bay is a true estuary in which the Delta 
comprises the freshwater tidal zone, Suisun Bay the brackish zone, San Pablo Bay the seasonally 
predominant saline zone, and the Central Bay the ocean influenced zone. The South Bay, which is not 
directly linked to the lowland river system, is characterized as an estuarine influenced lagoon (Nichols et 
al. 1986). 
 
The local supply of freshwater and sediment from rivers, streams, and outfalls creates secondary gradients 
that effect estuarine conditions and habitats at smaller scales. These secondary gradients are superimposed 
upon the primary gradients and lie along channels draining the local watersheds (e.g. Napa River, 
Alameda Creek).  
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The primary and secondary gradients affect the ecological variability of the regions and create distinct 
landscape mosaics. For instance, along the North Bay, Suisun, and the Delta axis, the evolution of 
marshes is influenced largely by the flow of freshwater and sediment from the Delta and the modification 
of the tidal wave as it progresses landward. 
 
The vegetated marsh plain is typically drained by a complex dendritic tidal channel system (e.g. Figure 
4). Each tidal channel has a tidal “watershed,” the marsh area that each channel fills and drains. These 
localized watersheds are distinguished by very subtle changes in elevation.  
 
In large ancient marshes of San Francisco Bay, permanent ponds in the marsh plain sometimes occurred 
at the watershed divide. These ponds are usually shallow, well-defined, persistent depressions about 0.3 to 
0.6 m (1 to 2 ft) deep that contain about 0.15 m (0.5 ft) of standing water at all stages of the tide. They 
receive tidal inflow only on the highest tides and can become hypersaline in the summer. In addition, 
ephemeral ponds can form on the marsh plain because of disturbance from floating debris deposited on 
the marsh plain. At the inland edge of the transgressing marsh, salt pannes form where tidal drainage is 
impeded. These features are less well defined and tend to dry out to salt flats in the summer. 
 
Structural diversity and species richness increases landward of the estuarine ecosystem boundary. In the 
Goals Project, Holstein describes plant communities that historically have formed ecotones with baylands 
(Goals Project 1999). Today there are few remaining examples of a native vegetational ecotone such as 
coastal scrub, chaparral, grassland, riparian, or oak woodland communities remaining around the Bay.  
 
Because most restoration sites in San Francisco Bay are surrounded by urbanized land, almost all 
transitional areas from high marsh to upland vegetation have been eliminated and their function as 
habitats and refugia is largely missing. In addition, transitional areas historically provided part of the 
buffer area that served to protect the wetland and its wildlife values; this function is also largely missing. 
 
2.2 EVOLUTION OF NATURAL TIDAL WETLANDS IN SAN FRANCISCO BAY 
 
Guiding our concept of the evolution of San Francisco Bay wetlands is an understanding that the Bay is a 
dynamic, evolving system and a single, coherent landform. The deep subtidal channels, shallow subtidal 
bays, tidal mudflats, and salt marshes are all components of the Bay that interact and evolve with each 
other in response to changes in sediment supply and energy gradients. The distribution and composition 
of plant species in a salt marsh are influenced by the location and size of tidal channels. Vegetation shows 
significant increases in species richness in direct proportion to distance from the channel bank and to 
channel size (Sanderson et al. 2000; Sanderson et al. 2001). 
  
The main physical processes that controls the form of the Bay are the tidal prism (which will determine 
the size of the main channels); sediment supply (which will determine the ability of the Bay to change its 
shape); the tidal frame; the wind wave climate; and relative sea level rise rate (which will determine the 
vertical position of the Bay). 
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The form of an estuary is altered mainly by the deposition of sediment, either sediment that is reworked 
from other parts of the estuary or that enters the estuary from the watersheds or ocean. Sediment moves 
between each of the components within the estuary, allowing the estuary as a whole to continually be 
adjusting towards some long-term equilibrium form in response to changes in physical or geomorphic 
processes. 
 
The marshes, mudflats and tidal channel’s habitats therefore evolved over thousands of years, sustained 
by the inflow of sediment eroded from the watersheds of the Central Valley rivers. This material was 
transported to the Bay during large winter floods on the Sacramento and San Joaquin Rivers. Coarser 
sediments were deposited upstream on the vast floodplains, leaving the clays and silts to settle out in the 
shallows of Suisun, San Pablo Bays and occasionally, the South Bay. Typically, later in the year, wind 
waves would re-suspend these muds, and tidal currents would redistribute them to all parts of the Bay. 
 
The form of the tidal wetland, and the estuary, is therefore the current expression of the interaction and 
evolution of hydrologic and geomorphic processes within the estuary. This form or “structure” at any 
given time is a snapshot of an evolutionary landform that is a product of a dynamic equilibrium between 
key physical processes. At a particular scale and time frame for a particular estuary, these processes 
dictate a roughly predictable equilibrium form of tidal wetland.  
 
Ten thousand years ago at the end of the last ice age, rapidly rising sea levels flooded the mouth of the 
Sacramento River through the Golden Gate, dramatically increasing the tidal prism and substantially 
raising the tidal frame. The initial rapid rise in sea level of 10-20 mm/yr (0.4-0.8 in/yr) only allowed a 
thin, discontinuous fringe of salt marsh to develop along the expanding shoreline (Atwater et al. 1979). 
 
The extensive ancient marshes fringing San Francisco Bay were formed 2,000 to 6,000 years ago when 
rates of sea level rise of the Holocene transgression declined by an order of magnitude to their current 
rates of approximately 1-2 mm/yr (0.04-0.08 in/yr) (Atwater et al. 1979). In this period, marsh plains 
expanded inland as sea level rose, covering the upland topographyas can be seen at China Camp Marsh 
(Figure 4). It appears that the landward transgression was usually accompanied by progressive erosion of 
the bayfront edge from wind wave action. Vegetated marsh plains were able to keep pace with rising sea 
level at about the elevation of the MHHW through inorganic sediment accretion and organic 
accumulation.  
 
As marsh plains rose in elevation with sea level, a complex dendritic system of sinuous tidal channels 
extended inland and kept pace vertically, and, except for smaller first and second order channels, tended 
to remain stable in place (Collins et al. 1987). Cordgrass colonized the edges of the larger sinuous tidal 
channels and estuarine fish were resident within the marsh channels.  Ponds and pannes formed on the 
marsh plain where tidal drainage was least effective, with the ponds forming on the watershed divides and 
pannes forming at the encroaching landward edge. 
 
Figure 5, created by San Francisco Estuary Institute’s EcoAtlas (SFEI 1999) and published by the Goals 
Project, illustrates the evolving tidal wetlands in the Bay 200 years ago prior to massive human 
disturbance (Goals Project 1999). 
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2.3 HUMAN INTERVENTIONS IN THE ESTUARY  
 
European-American colonization over the last 200 years has transformed not only the landscape of the 
Bay by the diking of 90% of the tidal marshes as shown in Figure 6, but has also changed the processes 
that sustain wetland habitats of the Bay by altering the sediment budget, hydrodynamics, and salinity 
distribution. 
 
When marsh plains were diked for agriculture or salt pond production 135 to 35 years ago (Goals Project 
1999), they subsided by up to 3 m (10 ft) depending on the duration and effectiveness of land drainage. 
Typical total subsidence for diked tidal marshes throughout the Bay range between 0.6 and 2 m (2 to 6 ft), 
which means that unless fill material is used to raise ground elevations prior to breaching, many sites are 
initially below minimum elevations for vegetation colonization. Regional groundwater withdrawal has 
caused additional subsidence in the southern part of the South Bay. Isolated from tidal flows, these sites 
no longer received estuarine sediments or produced peaty organic material. After approximately 100 years 
of rising sea levels, the land surface is now relatively lower within the tidal frame by approximately 0.15 
m (0.5 ft).  
 
Almost all potential restoration sites in San Francisco Bay are located on these diked ancient marshes. 
Diking required construction of levees—typically constructed by sidecasting Bay mud from a parallel 
borrow ditch until the levee crest was about 1.2 to 1.5 m (4 or 5 ft) above MHHW, above the highest 
storm surge water level.  
 
Where land was farmed, fields were ditched, drained and leveled, and the topography of marsh plain 
channels and ponds was often obliterated. However, in some locations, particularly the North Bay, the 
subtle topographic expression of former channels and ponds continue to exist as seasonal wetlands within 
the farmland. Natural transitional marshes were eliminated wherever dikes or roadways were constructed 
on the marsh perimeter. Today the transitional marsh is usually only a diminished remnant. A brackish 
interface between a pristine watershed and a tidal salt marsh today only exists in a few preserved areas 
such as China Camp in Marin County. Here, watershed runoff supports brackish-tolerant plants such as 
willows, sedges, rushes, and cattails that merge into the salt marsh. 
 
At the same time, substantial human-induced changes have occurred within the Bay. In San Francisco 
Bay in the 19th century, increased sediment inflows due to hydraulic mining, watershed erosion, and loss 
of sediment “sinks” provided by the original marsh plain greatly increased suspended sediment 
concentrations in the Bay, resulting in sediment deposition and newly formed fringing marshes that 
advanced over the mudflats. These accretionary marshes, referred to as “Centennial” marshes, can be 
different in character than the ancient transgressive marshes formed by rising sea level. In the 20th 
century, sediment delivery declined and dams and diversions reduced freshwater inflows, changing the 
salinity distribution. Other changes may be biogenic, such as the loss of tree trunks deposited on marsh 
plains, reducing the frequency of disturbance, or the invasion of exotic cordgrass converting mudflats to 
marsh plain (CSCC and USFWS 2003). In some locations, diked subsided former tidal marshes were 
accidentally breached and abandoned allowing the reformation of new accretionary restored marshes, 
such as occurred in the 1930s at Ideal and Whale’s Tail Marsh and in the 1980s at White Slough. 
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2.4 CONCEPTUAL MODEL OF RESTORED TIDAL WETLANDS EVOLUTION 
 
When tidal action is restored to a subsided site through a deliberate or accidental levee breach, physical 
processes are set in motion that dictate how the site will evolve. These accretionary sedimentary processes 
have been described in conceptual models of youthful salt marsh development (Allen 2000). Accretionary 
processes are different from long-term transgressive processes, which created the extensive ancient 
marshes of San Francisco Bay and are dominated by sea level rise. In a restoring marsh, floodtides carry 
in suspended estuarine sediments that deposit in the slack waters of the flooded site. Ebb tidal currents are 
insufficient to resuspend deposited muds and silts, except in the locations of nascent tidal channels. As 
sediment accumulates, large areas of intertidal mudflats form. As they rise in elevation, the period of 
inundation decreases and the rate of sedimentation declines. 

Once tidal mudflats reach a high enough elevation relative to the tidal frame, pioneer plant colonization 
occurs. Initial establishment usually occurs by seed or from plant fragments. Colonization becomes 
progressively more rapid through lateral vegetative expansion from the pioneer plants. Figure 7 illustrates 
how the elevation of a subsided site is anticipated to evolve in response to estuarine sedimentation 
processes, from subtidal to intertidal mudflat, to initial mudflat colonization by salt-tolerant marsh plants, 
to ultimately a fully mature vegetated marsh plain. Sites that have relatively high initial elevations will 
therefore reach colonization elevation more quickly than more deeply subsided sites. For this 
representation, the influence of episodic events is integrated and sea level rise is excluded. 
 
In San Francisco Bay, Pacific cordgrass, alkali bulrush, or annual pickleweed is typically the first 
vegetation to colonize an accreting mudflat and dominate the low marsh. Pioneer colonization occurs 
when seeds or clonal fragments float in on the flood tide. Once established, populations expand vertically 
by vegetative growth within a species-specific elevation range. Pioneer colonizing cordgrass seedlings 
require mudflat elevations of approximately 0.2 to 0.4 m (0.7 to 1.3 ft) above mean tide (Siegel 1998; 
PWA 1999) and sufficiently quiescent conditions for seeds to germinate (Friedrichs and Perry 2001). 
Once established, cordgrass can expand to lower elevations, as low as 0.0 to 0.3 m (0.0 to 1.0 ft) below 
mean tide (Atwater and Hedel 1976). Colonization elevations vary around the Bay because of differences 
in tidal range and salinity. Appendix A.1 contains observations of the elevation ranges for marsh species. 
For some sites that are not deeply subsided, existing wetland vegetation may persist and expand after 
breaching, which occurred at Napa Pond 2A and Cooley Landing. 
 
Once mudflat colonization occurs, a vegetated marsh plain forms through lateral expansion of rhizomes 
from established plants on the mudflat, and from plants along the site perimeter. The presence of 
vegetation contributes to the slow build-up of the marsh plain through sediment trapping and organic 
accumulation (Eisma and Dijkema 1997). In addition, vegetation cover stabilizes mudflats by preventing 
remobilization of sediment deposits during extreme wave events. As the marsh plain rises within the tidal 
frame, estuarine sediment accretion slows exponentially until a marsh plain forms at an elevation, in the 
case of San Francisco Bay marshes, within a few tens of centimeters below MHHW (Atwater et al. 1979) 
(Figure 7). As tidal inundation decreases, maximum soil salinities increase and perennial pickleweed out-
competes cordgrass to form the characteristic salt marsh plains of San Francisco Bay. 
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The presence and distribution of vegetation, in turn, provides feedback that affects physical processes 
resulting in a deeply complex ecosystem. For instance, once vegetation is established organic material 
will accumulate within the marsh both above ground as surface litter and below ground, through the 
decay of roots and rhizomes in the form of peat.  
 
The rate at which the mudflat and marsh plain build up is dependent on the amount of sediment carried 
into the site by the flood tide, the rate of relative sea level rise, the amount of wind wave action that 
resuspends deposited sediments, and the rate of organic accretion. The balance between sea level rise and 
net accretion will determine the ultimate equilibrium marsh plain elevation in an accretionary restored 
marsh. This may be lower than the marsh plain elevation in a transgressive ancient marsh. 
 
Although suspended sediment concentrations vary widely at any given time, long-term average annual 
suspended sediment concentrations can vary from less than 50 mg/L to more than 500 mg/L. 
Concentrations are influenced by the long-term sediment budget of the Bay, as well as the proximity of 
the site to the estuarine circulation turbidity maxima or proximity to extensive intertidal mudflats where 
sediment can be locally resuspended by wave action. Sediment concentrations tend to be lowest for 
interior marshes, furthest from the estuarine sediment supply. Figure 8 shows the potential influence of 
suspended sediment concentration on the rate of evolution. 
 
Relative sea level rise is due to a combination of global eustatic sea level rise and local long-term 
subsidence. Eustatic sea level rise is predicted to accelerate due to global warming (IPCC 2001). For 
average modeling parameters, the Intergovernmental Panel on Climate Change (IPCC) sea level 
projections for the next 50 years (from 2000 to 2050) for different emissions scenarios range from 
approximately 2 to 4 mm/yr, which is roughly twice the 20th century rate. The net effect of accelerated 
rates of relative sea level rise on rates of evolution is shown in Figure 9. 
 
Wind blowing across open expanses of water, such as low restoration sites at high water, can generate 
waves that are sufficient to inhibit net deposition of suspended sediment from the water column and 
resuspend already deposited material. This can reduce the net accretion rate, slowing the evolution of the 
marsh plain and even limit the equilibrium elevation of the site by preventing colonization. In South San 
Francisco Bay, Shoellhamer found that suspended sediment concentrations were correlated with seasonal 
variations in wind shear stress (Schoellhamer 1996). Wave-induced bed shear stresses are a function of 
wave power, which in turn is a function of fetch length and wind velocity squared, and are inversely 
related to water depth (USACE 1984). This means that vulnerability to sediment disturbance and re-
working from wave action increases as mudflats build in elevation. Conceptually, this can result in a 
retarded evolutionary trajectory or, for high wave energy sites, a permanent mudflat too low to be 
colonized by emergent vegetation. Nicholas and Boon identified the effect of wind waves in maintaining 
water depths below colonization elevations as a primary determinant of the morphology of coastal 
lagoons (Nichols and Boon 1994). The net effect of wave exposure on the evolution of the marsh is 
illustrated in Figure 10. 
 
Where restoration sites are fully tidal, periods of inundation are equivalent to tidal curves for the Bay. 
Where tides are muted or restricted by culverts or narrow channels, periods of inundation are altered and 



   

  
 

 
13

vegetation establishment can be significantly delayed or restricted. For a number of accidental or 
intentionally restored sites, tidal action can be significantly damped by the hydraulic constriction of a 
narrow levee breach or small inlet channel. Over time, scouring action tends to enlarge these 
constrictions, eventually restoring full tidal exchange (a full tidal range within the site). Until this occurs, 
the volume of sediment entering the site on the flood tide will be reduced proportionally to the reduction 
in tidal prism, extending the time of evolution. 
 
Concurrently with the physical evolution of the marsh plain shown in Figure 7, the tidal drainage system 
starts to form. As mudflats accrete to intertidal elevations, mudflat tidal channels form and become fixed 
as vegetation establishes and the marsh plain develops (Beeftink and Rozema 1988). Depending on their 
contributing tidal watershed, channels may eventually incise into the evolving mudflat (French and 
Stoddart 1992; French 1993). As vegetation becomes established, these sinuous mudflat channels become 
imprinted in the marsh plain, eventually forming a dendritic tidal channel system as shown in Figure 11. 
Within this system, the tidal channel geometry at any given point is mainly dictated by the tidal prism of 
the area of marsh upstream (Williams 1986). Borrow ditches or drains, if present, will tend to capture and 
dominate the evolution of the tidal drainage system. 
 
As the marsh evolves from primary colonized mudflat to low marsh and then to high marsh, the density of 
tidal drainage channels changes. In the young marsh, marsh plain elevations are low, tidal prism is large 
and drainage density high. As sediments accrete beyond a certain point, tidal prism is reduced and 
drainage density decreases. The elevation of maximum channel density is estimated to be around the 
elevation of the neap high tide in semi-diurnal tidal regions but has yet to be defined within the Bay (Steel 
and Pye 1997). Channel density therefore varies with elevation and hence age of restoration; a low marsh 
restoration will tend to have more small channels in complex drainage patterns while a higher or older 
marsh will tend to have a less complex drainage pattern with fewer small channels and eventually marsh 
plain ponds. 
 
Slough channel edges tend to be better drained and may have subtle variations in topography that results 
in increased habitat diversity. In the San Francisco Bay, estuarine sediments are almost entirely clays or 
silts. Only where major creeks discharge into the Bay or wave action creates pocket beaches is there a 
significant source of coarser sediment. Alluvial sediments from creeks can form transitional alluvial fans 
and natural levees along channels. Wave action on beaches can create shell and sand chenier ridges. 
These heterogeneous features provide specialized habitat for plant species. 
 
In restoring tidal wetlands, we are creating a wetland form in an immature state, with the intent that it will 
evolve as rapidly as possible towards a mature state to provide similar ecologic functions to those in the 
ancient marsh. However, we have to recognize that the mature restored marsh may differ from, or take a 
very long time to achieve, the same functions as the ancient marsh. 
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2.5 HOW RESTORED MARSHES HAVE EVOLVED 
 
The rate at which tidal marshes have evolved has varied at the individual restoration sites listed in Table 
1. In general, it appears that monitoring programs of five or ten years have not been long enough to define 
the complete evolutionary trajectory of key functions like vegetation succession or tidal channel 
development. Nevertheless, monitoring data from these sites is providing useful information and insight 
on key design decisions. The following summarizes important features of each site. 
 
Carl’s Marsh. Extensive detailed monitoring by Stuart Siegel (Siegel 2002) for the California State 
Coastal Conservancy and Sonoma Land Trust (WWR 1998; WWR 2003) and by CALFED’s BREACH 
research team, is providing some of the best research data on evolution of an initially subsided restored 
site. Carl’s Marsh was historically part of the Petaluma River’s fringing centennial marsh, which was 
diked for agriculture. The Sonoma Land Trust restored the site in 1994 by breaching the levee at two 
locations and excavating higher order channels. High sedimentation rates make this one of the fastest 
evolving sites in the Bay. Initial cordgrass established within two years of the dike breaching at elevations 
between 0.2 to 0.4 m (0.6 to 1.2 ft) above mean tide level (MTL). Vegetation, which also includes annual 
pickleweed, perennial pickleweed, and alkali bulrush, has expanded rapidly. Shorebirds forage on the 
mudflats and Samuel’s song sparrows nest on the degraded outboard levee (WWR 2003). 
 
Cooley Landing. This restoration is a prototype for a shallow subsided salt pond restoration where the 
original tidal drainage system is still largely intact. At Cooley Landing, the footprint of the historic 
channel system was preserved; however, the channels had silted in and borrow ditches were constructed 
around the site perimeter. Mitigation monitoring (PWA et al. 2002a; PWA et al. 2004) is providing an 
understanding of the effectiveness of design features intended to rapidly rejuvenate the pre-existing tidal 
drainage system, which include channel guide berms near the two breaches and borrow ditch blocks. 
Sediment accumulated in the high order historic channels eroded rapidly after restoration by channel 
head-cutting. The channel guide berms focused tidal flows into the major channels and the ditch blocks 
have prevented channel formation in these artificial features. First order channels at the back of the site 
have also been re-occupied. Three years after restoration, approximately 15 percent of the site was 
covered with vegetation, but stands of non-native smooth cordgrass (Spartina alterniflora) have been 
identified and are being controlled. 
 
Crissy Field. This small restoration project located in the Golden Gate National Recreation Area 
(GGNRA) is probably the most visited site in the Bay Area. It is an unusual site for San Francisco Bay 
because it is located near the Bay mouth and is closer in character to the sandy coastal lagoon fringe 
marshes of the Pacific Coast than the interior marshes of the Bay. The GGNRA is carrying out an 
extensive long-term monitoring program. Estuarine sedimentation rates at Crissy Field are negligible; 
however, coarse sand has dynamically formed a flood tide shoal, as is characteristic of coastal lagoons. 
Vegetation consists of fringing cordgrass and upland species, which were planted as part of the restoration 
design. The Crissy Field restoration provides valuable opportunities for public access and education. 
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Faber Tract. The first restoration project in San Francisco Bay was a dredged material disposal site 
breached in 1972. This was the first site in the Bay where marsh vegetation was observed to restore 
naturally. Also, this was the first site where cordgrass was planted and established. Faber Tract is now 
fully covered by pickleweed. Surveys and corings have provided an understanding of how tidal channels 
form on dredged material (LTMS 1996). Channels did not develop in the marsh plain at the back of the 
site near dredged material discharge points where fill elevations initially exceeded MHHW. The tidal 
channel system in the lower portions of the site formed parallel to the slope of the placed dredged material 
in a pattern that is distinct from sinuous, historic tidal channels. Faber Tract provides important breeding 
ground for the California clapper rail in the South Bay and is part of the Don Edwards National Wildlife 
Refuge.  
 
Martinez. Although this site is new and fairly small, it has an extensive mitigation monitoring program in 
place that is providing valuable information on how filled sites can be graded to allow rapid vegetation 
colonization (PWA and Sycamore & Associates 2004). The Martinez project site was filled above tidal 
elevations with construction debris. The restoration design included the excavation of intertidal marsh 
plain and a sinuous system of dendritic tidal channels. The restoration enhanced flood protection by 
providing flood storage and flow conveyance along Alhambra Creek.  
 
Muzzi Marsh. This site is divided into two parts with very different characteristics. The high elevation 
“Inner” Muzzi site was filled with dredged material and the lower elevation “Outer” Muzzi site has filled 
by natural sedimentation. Pickleweed colonized at higher elevations of the “inner” marsh plain within a 
year after the dikes were breached (1976) and in the next ten years had spread across most of the “inner” 
marsh plain. Cordgrass established in several places in the “outer” marsh within three or four years after 
tidal restoration. Today, the marsh is fully vegetated with extensive stands of cordgrass that are slowly 
being replaced with pickleweed as the marsh plain matures. Vegetation that established close to breach 
locations is beginning to erode as the breaches widen. In 2003, the invasive smooth cordgrass colonized 
in two places near the southern breach. 
 
The distribution of plant species remains dynamic nearly 30 years following dike breaching. The 18-year 
monitoring of this site has provided a better understanding of both the physical processes and vegetational 
establishment and succession. There is a population of approximately 15 pairs of clapper rail within the 
marsh and a small population of harvest mice just outside the marsh. However, no surveys of the salt 
marsh harvest mice have been conducted within the marsh. 
 
Appendix B.5 has physical and vegetation monitoring data for Muzzi Marsh. 
 
Napa Pond 2A. This project, located in the Napa Salt Pond complex, is the largest restoration in the San 
Francisco Bay. It has been monitored intermittently. This salt production pond was diked in the 1950s, 
but was not in operation prior to restoration. The site had experienced little subsidence and the internal 
tidal drainage system was still intact. In 1995, the California Department of Fish and Game (CDFG) 
restored Pond 2A by dynamiting a levee breach to South Slough, followed by a second dynamited breach 
to China Slough in 1997. Vegetation colonization has been rapid since restoration. Within the first 
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growing season, extensive areas of the marsh were vegetated, and today, the marsh plain is covered with 
pickleweed and alkali bulrush with Pacific cordgrass growing on the edges of channels. 
 
Alameda Creek Pond 3. This was a maintenance dredging disposal site that was planted and restored to 
tidal action 30 years ago. Unfortunately, the exotic smooth cordgrass was included in the planting and has 
since propagated in many areas of the Bay. Much of the site was initially too high for tidal action but over 
time subsided and became vegetated with pickleweed. Tidal channel formation has been limited due to 
the high elevation of the marsh plain. 
 
Sonoma Baylands. There are two separate parts to this restoration project, the 11-hectare Pilot Unit and 
the 109-hectare Main Unit. Both sites are being monitored extensively. Dredged material was used to 
accelerate evolution of the marsh plain, but unfortunately, evolution was retarded by restricted tidal action 
through pre-existing small tidal channels in the wide outboard marsh that connects the sites to the Bay. 
This has meant that for much of the time tidal range has been muted and most of the site has been subtidal 
or intertidal mudflats. The performance of many important design features can be evaluated through the 
monitoring program, including the gradual erosion of the connector channels and the subsequent increase 
in tidal prism and sedimentation. Seedling establishment of pickleweed is limited to the higher tidal 
perimeter of the site and to peninsulas. Cordgrass established first within two years of tidal access in 
sheltered junctions of the pilot peninsulas and expanded as the tidal range increased. Seedling 
establishment on the tidal marsh plain suggests that the vegetation is responding to increased ebb drainage 
times. Full vegetative cover, while initially restricted, may occur within 20 years. 
 
Appendix B.6 has physical and vegetation monitoring data for Sonoma Baylands. 
 
Warm Springs (Coyote Creek Lagoon). This site, located in the furthest reach of the South Bay, was 
originally a deep borrow pit that was breached to Coyote and Mud Sloughs. Since tidal action was 
reintroduced, it has silted in rapidly as designed. Continuous monitoring has provided valuable insight on 
the evolution of a deeply excavated restoration site that has rapidly filled with sediment. Species 
establishment was effected by variability in the salinity regime of the South Bay and a sudden increase in 
the Mud Slough connection that altered the hydrologic regime and soil conditions. An early band of 
pickleweed around the perimeter died back from altered conditions. Native cordgrass established in the 
second year following breach openings and expanded rapidly as levels were reduced. Cordgrass was 
entirely replaced by brackish species of bulrush and cattails within ten years. At present, 17 years after the 
dikes were breached and under current stable brackish conditions, dense stands of bulrush and cattails 
expand vegetatively 1 to 2 m (3 to 6 ft) a year inward from the perimeter. Mudflats in the center remain 
mostly bare, though large clumps of bulrush appear to have floated in, established, and have begun to 
expand. The distribution of plant species at Warm Springs remains dynamic 18 years after the dikes were 
breached. No surveys for clapper rail or salt marsh harvest mice have been conducted. 
 
Appendix B.3 has physical and vegetation monitoring data for Warm Springs (Coyote Creek Lagoon).  
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3. PLANNING CONTEXT 
 
3.1 APPROACH 
 
These guidelines are written to assist the process of restoring tidal wetlands as healthy ecosystems. 
Ecosystem health or integrity is described by ecologists as the:  
 

condition in which a system realizes its inherent potential, maintains a 
stable condition, preserves its capacity for self-repair when perturbed, 
and needs minimal external support for management (Karr 1993). 

 
In general, tidal wetland physical processes are the major influence on form and function. The biota 
evolve more in response to, rather than interactively with, the hydrologic and geomorphic processes that 
form the physical landscape. Certain important species of plants, fish, and birds have evolved to exploit 
the physical habitat and the functioning and variability of the physical processes that occur in tidal 
wetlands. This means that restoring the physical integrity of the tidal wetland offers the best opportunity 
of restoring ecologic integrity. 
 
A more specific definition of a “healthy” functioning tidal marsh that is linked to physical integrity is one 
that: 
 

evolves to a mature state that sustains an intricate slough channel, marsh 
plain, and tidal pond system; this system is in a state of dynamic 
equilibrium with sea level and sedimentation, is resilient to natural 
disturbance such as extreme tides or earthquakes, and needs no 
management (Williams 2001b). 

 
A functioning tidal marsh is physically defined, at any given time, as both a landscape structure and a set 
of physical processes that govern the evolution and sustenance of its morphology. In designing tidal 
marsh restoration projects, we are restoring physical processes that create and sustain the particular form 
or structure that supports desired wetland functions. For example, we restore those sedimentary processes 
that will create a marsh plain and tidal drainage system that will, in turn, support the salt marsh harvest 
mouse and estuarine fish. 
 
This approach does not attempt to “engineer” a predetermined replicate of a tidal marsh, but provides a 
setting for the natural evolution of wetland functions and interplay of natural ecologic processes. 
 
In planning tidal marsh restoration, it is important to recognize that tidal marsh is but one component of a 
geomorphic continuum of landforms. The mudflat, the network of marsh channels, the marsh plain and 
the transitional zone are all components of the Bay that connect the estuary to the uplands and their 
evolution is intimately linked. Their inter-relationship must be considered in the site design. This means 
that the tidal marsh needs to be fully connected to the Bay. The natural equilibrium form of tidal wetlands 
requires the unimpeded action of the physical processes that create and sustain it. This also means the site 
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design needs to anticipate long-term geomorphic changes in the Bay. This means anticipating future sea 
level rise, subsidence, sedimentation rates, and channel evolution. 
 
Because most restoration sites are former tidal marshes, the most obvious and straightforward approach to 
restore a mature marsh is to reverse the original alteration of the marsh landscape by removing levees and 
let the unconstrained physical processes re-create the marsh over time. This “ideal” approach is rarely 
possible for three main reasons: 
 

1. The physical processes that formed the original marsh may be quite different than those 
operating now. For example, most mature marshes were formed as transgressive marshes by the 
gradual rise in sea level over thousands of years. Because most sites have subsided in elevation, 
restoring marshes will now have to form as accretionary marshes, relying on rapid sedimentation. 
Under some circumstances, restoring unconstrained natural processes will create permanent 
subtidal or intertidal mudflat habitat rather than vegetated marsh. 

 
2. In most restoration sites there are significant human constraints that limit the ability to 

restore natural processes. Typically, these constraints are: property boundaries that define and 
limit how a site evolves, flood protection requirements, and the presence of public access 
corridors. 

 
3. The economic investment in restoration is usually directed towards achieving particular 

restoration goals within a particular timeframe. For example, resource managers might be 
directed to quickly recover viable populations of endangered species to protect biodiversity, to 
achieve wetland functions that support the abundance of desirable fish or birds, and to achieve an 
aesthetically pleasing landscape where humans can view wildlife. This requires defining 
restoration success as achieving a particular pre-determined outcome within a certain period. It 
may also mean trade-offs between created design features that accelerate site evolution and the 
desire to allow unconstrained “natural” evolution. 

 
Wherever possible in restoration design, we seek to accommodate and take advantage of the natural 
physical processes that allow the tidal marsh to evolve. This is done by grading the site before the 
reintroduction of tidal action. We refer to the initial shaping of the site as the “site template.” An 
appropriately designed template will guide the evolution of the wetland towards the desired mature state. 
This approach means that the initial grading of the site is not done to replicate an “instant” wetland 
topography, but instead to create the conditions that allow the wetland landscape to evolve through 
hydrodynamic and sedimentary processes. If the appropriate initial design template is selected, the need 
for further management interventions is minimized. The initial site template can also be designed to 
achieve a mix of interim habitat types that provide a mix of valuable wetland functions as the site evolves 
and to anticipate the evolution of topographical heterogeneity as found on a natural marsh. 
 
Many of the design questions addressed in this report are related to engineering criteria used in designing 
the site template, as grading costs are often the most expensive part of restoration project implementation. 
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An example of a representative site template, an interim habitat mix, and an evolutionary end point is 
shown for the planned Hamilton Airfield restoration in Figure 12. 
 
There are rare examples in which restoration is undertaken as a pure scientific experiment where any 
outcome is equally acceptable and the resource manager is a passive observer (e.g. Cornu and Sadro 
2002). However, restoration projects are now more frequently used as opportunities for “adaptive 
management” to inform the practice of applied science. The term adaptive management has a range of 
definitions. It can be thought of as “learning by doing” (and also criticized as tinkering). When applied to 
reducing uncertainties in restoration design, an adaptive management program can be designed in a 
rigorous way by incorporating an experiment within the restoration project (CALFED 2000). This is 
typically intended to assess the effectiveness of different design parameters and then be used to guide the 
design of other restoration projects. A good example of this is the 8-hectare (20–acre) Model Marsh 
restoration project in the Tijuana Estuary (Zedler 2000; Zedler and Callaway 2003) that examines the 
effects resulting from the presence or absence of tidal creek networks. 
 
In contrast to the strategy of grading a site template to allow natural physical processes to restore a marsh, 
managed or manipulated tidal systems have sometimes been used to create desired wetland conditions 
quickly (Williams and Faber 2001). These projects typically incorporate artificial manipulation of tide 
levels through control gates and weirs, maintenance of a perimeter levee, and grading to create sub-tidal 
and refuge habitat. Subsequent experience has shown that the long-term management and maintenance 
costs were often underestimated and many sites have not been managed as intended. In addition, the 
resilience of invertebrate populations and vegetation in these marshes responding to extreme events, such 
as large floods, and their long-term sustainability has been overestimated. Recent reviews of managed 
marshes across the U.S. have cast doubt on their long-term effectiveness and ecologic value as compared 
to restoring natural systems (EPA 1998). 
 
3.2 METHODOLOGY 
 
The design of a tidal wetland restoration is one component in a complete restoration program that starts 
with the development of restoration goals and objectives, proceeds through planning, design, construction 
implementation, monitoring and management. We recognize that design decisions are determined by the 
set of goals and objectives adopted for the project and the planning methodology used.  
 
In early restoration projects, including several evaluated in this report, goals and objectives were not 
clearly articulated, nor was an explicit methodology articulated or followed. A typical statement of 
restoration goals has been: 
 

To create a succession of tidal wetland habitats from mudflat to mature pickleweed 
marsh plain as rapidly as possible. 
 

This statement captures an imperative to achieve the set of wetland functions associated with mature 
vegetated marsh as quickly as possible. As restoration projects have matured, there is a growing 
realization that there can be a substantial inverse tradeoff between the extent and cost of site grading and 
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the rate of evolution towards a vegetated marsh. We now appreciate that, even under favorable conditions, 
it can take multiple decades for a mature vegetated marsh to develop. A number of restoration projects, 
including Muzzi Marsh and Sonoma Baylands have been prematurely judged “failures” because they 
have not become a vegetated marsh as quickly as the public, resource managers, or their designers had 
expected. We now better understand the value of wetland functions provided by the restoring site to the 
estuary as the site evolves from mudflat to marsh and rapid evolution of a vegetated marsh is not 
necessarily the primary driver. Based on this experience, a contemporary goal statement might be: 
 

To create a succession of biologically rich and diverse tidal wetland habitats, including 
transitional wetlands and adjacent uplands, as part of a sustainable estuary system that 
requires minimal long-term intervention. 

 
A general goal statement like this recognizes the value of interim habitats and the importance of the 
wetland as part of the entire estuary ecosystem. It is translated into specific operational objectives that are 
consistent with the conceptual model of tidal wetland evolution of the particular site. 
 
Early tidal wetland restoration projects typically included the following two ecologic objectives: 
 

1. Achieve rapid evolution to a vegetated marsh plain habitat. 
 

2. Provide appropriate habitat to support particular species. 
 
Now, restoration projects, such as the South Bay Salt Ponds Restoration, are planned as multi-objective 
projects that fully integrate ecological and social objectives. Typically, restoration projects may include 
the following seven objectives: 
 

1. Allow for the evolution of biologically rich and diverse tidal wetland habitats. 
 

2. Promote the evolution of a complex tidal drainage system, particularly to support 
invertebrates, fish and birds. 

 
3. Maximize the contribution of the marsh to the estuarine ecosystem, with connections 

between marshes where possible. 
 

4. Create a complete marsh that includes all zones, including a high marsh and transitional 
wetland-upland habitat along the upland fringe. 

 
5. Provide appropriate habitat to support rare, threatened, and endangered species and avoid 

creating features that will benefit their predators. 
 

6. Provide and enhance public access (this is sometimes treated as a constraint). 
 

7. Reduce flood hazards (this is sometimes treated as a constraint). 



   

  
 

 
21

A rigorous planning methodology requires that these objectives be made “operational” by defining 
measurable indicators of their performance. Examples of these indicators are presented in Table 3 (p. 59). 
These indicators provide the metrics for comparing the merits of alternative restoration plans, the 
outcome of the selected restoration design, as well as the basis for a monitoring and adaptive management 
program. They also provide the ability to compare expected with actual performance, improving 
experience in restoration design and giving the opportunity to produce an updated version of these Design 
Guidelines sometime in the future.  In many early restoration projects, performance indicators were either 
ill defined, or specified as unrealistic regulatory compliance criteria, such as percent vegetation cover of a 
particular plant species. 
 
In the planning process, alternatives can be developed that provide for a mix of evolving habitats: 
transitional marsh, marsh plain, mudflats and subtidal open water that change over time. Projections can 
be made of the performance of the set of indicators for these different alternativesincluding the no-
action alternative—at different times into the future. Typically, these projections will examine and 
compare the evolution of desired wetland functions from different site templates at Year 0, to a mature 
state, taking into account future changes in physical and ecologic processes. These projections need to be 
based on an explicit conceptual model of how wetland functions are expected to evolve, assisted by 
various analytic tools available to predict physical evolution, as well as empirical data of the type 
included in this report. Expected performance is based on a projection of how, and when, wetland 
functions will evolve within the planning period. 
 
The human as well as the ecologic landscape has to be considered in restoration. This means that non-
ecologic constraints often have a major influence on site design and usually preclude returning a site to its 
pre-disturbance condition, even where physical processes have not changed significantly. 
 
Each particular site will have design questions dictated by its own set of constraints. Typically, the most 
significant constraints result from local man-made topography, such as levees, landfills, or property 
boundaries that are unrelated to the natural landscape, and man-made infrastructures such as sewer lines 
or roadways. These constraints usually define the site template “footprint” that limits the aerial extent and 
shape of the wetland and its relation to the upland watershed that would naturally adjoin it.  
 
The following five constraints are often encountered in restoration design: 
 

1. Potential impact on offsite flood hazards and drainage (Nowadays often included as an 
objective); 

 
2. Presence of public access or utility corridors (Nowadays often included as an objective); 

 
3. Prevention of colonization or intrusion by invasive species; 

 
4. Requirements for mosquito control; and 
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5. Impacts resulting from the conversion of existing wildlife habitats (e.g. salt pond, seasonal 
wetland, or diked salt marsh) to tidal wetland. 

 
Therefore, the restoration design is usually directed by the integration of two sets of planning issues: 
those intended to achieve the ecologic objectives of the project and those required to address constraints 
on the restoration plan. 
 
3.3 FRAMEWORK FOR DESIGN DECISIONS  
 
Each of the restoration objectives and constraints pose key design questions that can be asked of most 
restoration projects (see summary in Table 2). This report is intended to address each of these questions 
based on current restoration experience. As can be seen, the same questions listed below may address 
several different objectives or constraints. The questions are: 
 

1. Should the site be filled? 
2. Should fill be removed? 
3. Should a levee breach and outboard channel be excavated? 
4. Should wave breaks be constructed? 
5. Should the bayfront levee be lowered? 
6. Should new tidal channels be excavated? 
7. Should the pre-existing drainage system be modified? 
8. Should the site be graded to encourage panne formation? 
9. How should the wetland-upland transition be designed? 
10. Should soil be treated? 
11. Should plants be planted? 
12. How do we provide habitat features for target species? 
13. How should public access be provided? 
14. How should we integrate flood management issues? 

 
3.3.1 Objective 1: Allow for the evolution of biologically rich and diverse tidal wetland habitats 
 
The evolution of tidal wetland habitat will depend upon the achievement of an appropriate elevation with 
respect to the tide, suitability of the substrate, and the availability of a seed source. 
 
Elevation 
  
If the site is subsided below the colonization elevation, the site may be filled high enough for colonization 
to occur, hence Question 1: Should the site be filled? If the site has been filled to above the typical marsh 
plain elevation, the site must be excavated, hence Question 2: Should fill be removed? For many 
subsided sites, it is too costly or impractical to import fill material and instead we rely on natural estuarine 
sedimentation to raise mudflat elevations into the colonization range. The question may be how can we 
accelerate natural sedimentation rates? 
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Maximizing the amount of sediment brought in on the flood tide and minimizing the amount leaving on 
the ebb tide accelerates natural sedimentation rates. The amount of sediment brought in on the flood tide 
is dependant on the volume of the tidal prism, and thus, on the tidal range within the site and the 
suspended sediment concentration in the water column. These are influenced by the levee breach 
geometry and location, hence Question 3: Should a levee breach and outboard channel be excavated?  
 
A significant factor influencing how much sediment leaves the site on the ebb tide is the wave energy 
within the site. Wave action slows deposition rates and induces resuspension of deposited mud. The 
amount of wave energy affecting a site is dependant on the wind climate, which cannot be controlled, and 
the fetch length, which can. Internally generated waves can be limited by suitable grading of the site 
template, hence Question 4: Should wave breaks be constructed? Remnant bayfront levees can be used 
as wave breaks, hence Question 5: Should the bayfront levee be lowered? 
 
Substrate 
  
Colonization requires a suitable substrate in the rooting zone in terms of its soil chemistry, grain size and 
bulk properties. Wetland plants are adapted to take advantage of and thrive in naturally deposited 
estuarine sediments. Filled sites may have unsuitable substrates, perhaps due to high acidity, low nutrients 
or excessive compaction. There are two strategies for dealing with this problem: removing enough fill so 
that a sufficient depth of estuarine sediment will accumulate, hence Question 2: Should fill be removed?, 
or modifying the soil substrate, hence Question 10: Should soil be treated?  
 
Seed source 
  
Normally it would be assumed that restoration sites have a substrate of bay mud and would be relatively 
close to other vegetated marshes to receive naturally transported seed for most native salt and brackish 
marsh plants. In cases where the site is isolated from other tidal marshes or where a rapid diversification 
of species is desired, there are circumstances where planting is necessary, which raises Question 11: 
Should plants be planted? 
 
3.3.2 Objective 2: Promote the evolution of a complex tidal drainage system, particularly to support 

invertebrates, fish and birds 
 
Coincident with the evolution of the vegetated marsh plain, we need to ensure the development of a 
complex tidal drainage system that fully connects the marsh to the tidal estuary. This channel system acts 
as a pathway for estuarine processes and migrating organisms and as a distinct habitat corridor that 
sustains certain species. The channel complexity—an amalgam of the size, shape, sinuosity, and density 
of the drainage system—provides a variety of microhabitats that support many marsh-dependent species. 
 
How quickly a drainage system will develop in an evolving marsh depends on how easy it is for channels 
to form. Its complexity will depend on how we design the restoration site template. There are three ways 
to address this question:  
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1. Encourage tidal channels to develop on emerging mudflats.  
 
As intertidal mudflats develop due to natural sedimentation in a restored site, a channel system forms in 
the newly deposited mud. Plants tend to preferentially colonize the mudflat channel edge stabilizing and 
defining the nascent tidal drainage system. Over time, as the site becomes vegetated, the channel system 
develops and extends further into the marsh plain (Figure 11). The rate at which this process develops is 
dependent on the rate of sedimentation that can be encouraged by implementing the design criteria aimed 
at accelerating the rate of sedimentation as described above: Question 3: Should a levee breach and 
outboard channel be excavated?, Question 4: Should wave breaks be constructed?, and Question 5: 
Should the bayfront levee be lowered? 
 
2. Encourage formation of channels in the pre-existing marsh plain. 
 
There are two ways of encouraging channel formation. The first is by pre-filling the marsh plain to an 
elevation that permits development of tidal channels in the freshly deposited estuarine mud. As these 
channels become defined and vegetated, they will scour into the placed fill. This design criterion is 
described in Question 1: Should the site be filled? The second is by excavating channels in the marsh 
plain fill. This is addressed in Question 6: Should new tidal channels be excavated? 
 
3. Rejuvenate pre-existing tidal drainage system. 
 
Most restoration sites are former tidal salt marshes that have been diked and have subsided, but have not 
been filled. On some of these sitesparticularly salt pondsthe original dendritic tidal drainage system, 
although silted in or filled, is still imprinted in the land surface. With suitable design elements, tidal flows 
can be redirected into this system allowing it to reform. This is addressed in Question 3: Should a levee 
breach and outboard channel be excavated? and in Question 7: Should the pre-existing drainage 
system be modified? 
 
Complexity within the tidal drainage system can be achieved by designing the size and shape of the site 
template to encourage the formation of large high order channels within a dendritic tidal drainage system. 
This is done by grading, fill placement, location of levee breaches, Questions 1: Should the site be 
filled?, Question 2: Should fill be removed?, Question 3: Should a levee breach and outboard channel 
be excavated?, Question 6: Should new tidal channels be excavated?, and by minimizing the influence 
of artificial ditch systems, Question 7: Should the pre-existing drainage system be modified? 
 
3.3.3 Objective 3: Maximize the contribution of the marsh to the estuarine ecosystem 
 
Marshes do not function in isolation of the estuarytheir carbon storage potential and dynamic carbon 
cycling can make marshes an integral part of the estuary’s ecological system. There are two pathways for 
tidal interaction between the marsh and the estuarine ecosystem: through a fully developed well-
connected tidal drainage system and across the bayfront marsh edge. Design criteria for the tidal drainage 
system are described above. The main barrier for tidal flooding across the bayfront edge is the remnant 
bayfront levee. This issue is addressed in Question 5: Should the bayfront levee be lowered? 
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3.3.4 Objective 4: Creation of transitional wetland-upland habitat along the upland fringe  
 
The high marsh vegetation in a tidal salt or brackish marsh, typically intergrades with upland plant 
species in a transitional wetland-upland ecotone. The boundaries shift according to seasonal wind and 
rainfall patterns and heights of extreme high tides. The high marsh portion of this transitional habitat may 
be a topographic feature on the marsh plain such as a channel bank levee or a wave-deposited mound or 
ridge. This transitional wetland-upland habitat was once significantly larger spatially and supported a 
larger flora. With the 90% loss of tidal wetlands in San Francisco Bay, the most severe losses are the 
transitional areas where roads and dikes have been constructed. Several plant species have either been 
extirpated from the Bay or are extinct today. Today, four plant species that were once more common are 
rare because of the loss of transitional marsh habitat by agricultural, industrial, and residential conversion 
of tidal marshes: Point Reyes bird’s-beak, soft bird’s-beak, Suisun thistle, and the Delta tule pea (Goals 
Project 1999). 
 
The upland transition of a marsh is important in terms of providing habitat and refugia for numerous 
wildlife species. In addition to this valuable habitat function, high marsh and transitional areas provide 
buffer space from disturbances emanating from adjacent land uses and from landward transgressions into 
the marsh. Today, in most areas around the Bay, transitional high marsh areas have been eliminated and 
transitional wetland-upland habitat is limited by the presence of steep levees, vegetated primarily by 
weedy non-native species, or roadways. Transitional wetland-upland habitat is important to many marsh 
wildlife species as it provides refugia and cover during extreme high tides and provides habitat for 
feeding, roosting, and breeding birds. In addition, transitional wetland-upland habitat can play in 
important role in mitigating flood hazards by dissipating and reducing wave action and providing an 
erosional buffer zone. 
 
For many species, the adjacent uplands—not just the wetland-upland transition—are important habitats in 
their own right. For example, the salt marsh harvest mouse (and other marsh species) often forage in 
adjacent uplands. Also, adjacent uplands serve as refuges for mice and rails during extreme high tide 
events. Thus, tidal marshes that lack a substantial area of adjacent uplands have a lower habitat value for 
many tidal species. 
 
Functional, sustainable transitional wetland-upland habitat requires a sufficient width, opportunities for 
disturbance through the deposition of wrack at very high tides, and availability of nearby seed sources for 
appropriate transitional vegetation. The first consideration is addressed in Question 9, How should the 
wetland-upland transition zones be designed? Facilitating the deposition of wrack is addressed in 
Question 5: Should the bayfront levee be lowered? Establishing vegetation is addressed in Question 11: 
Should plants be planted? 
 
3.3.5 Objective 5: Provide appropriate habitat to support endangered species 
 
All the design criteria described above are intended to provide the mix of vegetated marsh habitats needed 
to support target species as discussed in Question 12: How do we provide habitat features for target 
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species? Specific requirements for salt marsh harvest mouse refugia and suitable conditions for Soft 
bird’s-beak are addressed in Question 9: How should the wetland-upland transition zones be designed? 
 
3.3.6 Objective 6: Provide and enhance public access 
 
Question 13: How should public access be provided? considers how public access can be incorporated in 
the design template. These decisions can also influence Question 5: Should the bayfront levee be 
lowered? While maintenance access for utility corridors are not specifically addressed in this document, 
their issues are similar to those of public access. 
 
3.3.7 Objective 7: Reduce flood hazards 
 
This issue is considered in those design criteria that address coastal and fluvial flood hazards and are 
addressed in Question 14: How should we integrate flood management issues? In addition, design 
features that reduce or accommodate wave run-up and erosion of levees can play a significant role in 
reducing flood hazards. These are addressed in Questions 4: Should wave breaks be constructed?, 
Question 5: Should the bayfront levee be lowered?, and Question 9: How should the wetland-upland 
transition zones be designed? 
 
3.3.8 Constraint 1: Potential impact on offsite flood hazards and drainage 
 
This is often treated as an opportunity and is discussed above in Objective 7: Reduce flood hazards. 
 
3.3.9 Constraint 2: Presence of public access and utility corridors 
 
This is often treated as an opportunity and is discussed above in Objective 6: Provide and enhance public 
access. 
 
3.3.10 Constraint 3: Prevention of colonization and intrusion by invasive species 
 
The two main plant species of concern are smooth cordgrass, which is invading mudflats in the Central 
and South Bay areas and hybridizing with the Pacific cordgrass, and Pepper grass (Lepidium latifolium), 
which grows aggressively in wetland-upland transition areas, particularly in brackish marshes and 
adjacent upland areas. The transitional area is particularly vulnerable to colonization by invasive exotics 
because of frequent disturbance. These invasive species are impossible to control without intensive 
weeding and constant maintenance. 
 
No specific design criteria are presented in this report for invasive cordgrass control; however, close 
consultation with the California State Coastal Conservancy’s Invasive Spartina Control Project (CSCC 
and USFWS 2003) is advised for all restoration projects in the South and Central Bay areas. 
 
Limiting access for exotic predators such as red fox are discussed in Question 4: Should wave breaks be 
constructed? and Question 13: How should public access be provided? 
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3.3.11 Constraint 4: Requirements for mosquito control  
 
Mosquitoes occur in Bay ecosystems where certain species can be vectors for viral diseases such as forms 
of encephalitis and more recently West Nile Virus. Understanding the life cycles and habitat requirements 
of the species that can be disease vectors is important in their control. Mosquitoes rarely occur in 
significant numbers in fully tidal marshes, and tidal marshes do not provide good habitat for the two most 
troublesome mosquito species. However, problems can occur in seasonally ponded wetlands, in densely 
vegetated tidal areas that pond water between tides, or where tidal drainage has been interrupted. Tidal 
wetland restoration can reduce mosquito populations as tidal fluctuations keep water moving so that 
mosquitoes do not have standing water in which to breed. Design elements should be done in consultation 
with local Mosquito Abatement Districts. Wide buffers between wetlands and residential areas are 
desirable; access points for mosquito surveillance and control are important (Collins 1991; Goals Project 
1999). 
 
Providing unimpeded tidal drainage minimizes mosquito habitat. This is a consideration in the design of 
the tidal drainage system addressed in Questions 2: Should fill be removed?, Question 6: Should new 
tidal channels be excavated?, and Question 7: Should the pre-existing drainage system be modified? 
 
3.3.12 Constraint 5: Mitigation for conversion of seasonal wetland habitat to tidal wetlands 
 
Most restoration sites are subsided former salt marshes that now provide seasonal wetland habitat of 
varying quality depending on the water management regime of the site. The main value of this type of 
habitat is for shorebirds and migratory waterfowl. Compensating for the loss of this habitat has been a 
major constraint in the planning of several projects and has often led to a desire to incorporate seasonal 
wetland features in the restoration design. The most appropriate natural analog to artificially created 
seasonal wetlands appears to be seasonal pannes and marsh ponds. Pannes and marsh plain ponds are 
typical features of extensive, well-developed tidal marshes and vary considerably in size, sustainability, 
and salinity according to drainage and inundation regimes. 
 
At this stage in restoration practice we do not know how to design for restoring marsh plain ponds. 
However, the site template can be designed to create sustainable seasonal pannes at the marsh perimeter. 
This is described in Question 8: Should the site be graded to encourage panne formation?  



   

  
 

 
28

Table 2. Summary of Key Design Questions 
 

   
Objectives Indicators Design Questions 
1. Allow for evolution of 

biologically rich and diverse 
tidal wetland habitats. 

Rate of species establishment and 
the diversity of species, 
Area of vegetation 

How will a restored site become 
vegetated marsh? 
Q1-5, 10, 11 

2. Promote the evolution of a 
complex tidal drainage 
system, particularly to 
support invertebrates, fish 
and birds. 

Drainage density, 
Length and number of high order 
channels, 
Sinuosity 

How do we achieve a complex tidal 
drainage system? 
Q1-7 

3. Maximize the contribution of 
the marsh to the estuarine 
ecosystem. 

The extent of tidal exchange, 
Connectivity with estuary and 
uplands 

How do we connect the restored marsh 
to the estuarine ecosystem? 
Q5 

4. Create transitional wetland-
upland habitat along the 
upland fringe. 

Lineal extent, 
Composition and structure 

How much transitional wetland-upland 
habitat do we create? 
Q5, 9, 11 

5. Provide appropriate habitat to 
support endangered species. 

Stable populations of target species What habitat supports target species? 
Q9, 12 

6. Provide and enhance public 
access. 

Extent of public access corridors, 
Accessibility of utility corridors 

Q5, 13 

7. Reduce flood hazards. Flood damage potential, 
Water levels, 
Reliability of levees 

Q4, 5, 9, 14 

Constraints   
1. Potential impact on offsite 

flood hazards and drainage. 
See above See above 

2. Presence of public access or 
utility corridors. 

See above See above 

3. Prevention of colonization or 
intrusion by invasive species. 

Presence of invasive species in the 
site and the vicinity 

See EIR/EIS Guidance 
(CSCC and USFWS 2003) 
Q4, 13 

4. Requirements for mosquito 
control. 

Extent of poorly drained wetland 
with emergent vegetation 

Q2, 6, 7 

5. Mitigation for conversion of 
existing seasonal wetland 
habitat to tidal wetland. 

Area of suitable shorebird habitat Q8 
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4. DESIGN QUESTIONS 
 
4.1 QUESTION 1: SHOULD THE SITE BE FILLED? 
 
THE PROBLEM 
 
Most restoration sites are located on diked former tidal marshes that have subsided due to soil compaction 
and organic material oxidation. In many instances, these areas have subsided below the colonization 
elevation of emergent vegetation (Appendix A1). If the restoration objective is to re-create a vegetated 
marsh rather than an intertidal mudflat, there are two different strategies that can be applied. The first and 
most economical strategy is to take advantage of natural estuarine sedimentation to build up mudflats to 
elevations where plants can colonize. The second is to fill the site with imported sediments to raise 
elevations.  
 
Accretion of estuarine sediments depends on the amount of sediment carried into the site and deposited on 
flood tides, the amount of sediment eroded and carried out of the site on ebb tides, and the consolidation 
of deposited sediments. The amount of sediment carried into the site depends on the suspended sediment 
concentration at the source of sediment supply, the distance of the site from the sediment source, and the 
degree to which tidal exchange to the site is restricted. The expected rate of natural estuarine 
sedimentation at a restored site should be estimated from an analysis of measured suspended sediment 
concentrations, observed rates of sedimentation at similar restoration sites or nearby dredged marinas, and 
simple models of tidal sedimentation calibrated to measurements and observations (Krone 1987).  
 
Sources of suspended sediment include the resuspension of estuarine sediments from intertidal mudflats, 
silt and clay eroded by watershed runoff that drains to the Bay, and zones of high turbidity caused by 
estuarine circulation. Suspended sediment concentrations vary greatly in response to spring-neap tide 
cycles, seasonal changes in wind and rainfall patterns, and severe or El Niño storm events. Suspended 
sediment concentrations are higher in San Pablo Bay due to the presence of extensive mudflats and, to a 
lesser degree, sediment supply from the Petaluma, Napa, and Sonoma Creek watersheds. Subsided sites 
located near large sources of sediment have a greater opportunity to be restored through the processes of 
natural estuarine sedimentation.  
 
The rate of sedimentation in a restored site due to flood tide deposition will decrease with the period of 
tidal inundation as the mudflats build in elevation (Figure 7). Estimates of sedimentation rates should also 
account for the relative decrease in mudflat elevation due to the consolidation of deposited sediments over 
time. As the mudflats increase in elevation within the tidal frame, consolidation occurs due to the self-
weight of the material and increased dewatering at low tides. Unfortunately, there are no data on 
consolidation rates of mudflats and this effects the predictions of net sedimentation in the upper part of 
the tidal frame. 
 
The amount of material that is carried out of the site on the ebb tide depends mainly on the degree of 
wind-wave agitation of deposited sediment from the mudflat. Waves cause high water velocities at the 
bed that can inhibit cohesive sediment deposition and, if sufficiently high, scour previously deposited 
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sediments. The potential for high bed velocities and inhibition of deposition decreases with depth and 
increases with wind speed and fetch length. For a given site, deposition tends to continue until a critical 
bed velocity is reached. Once the site reaches this critical threshold, no further deposition will occur. If 
the critical threshold is reached while mudflat elevations are still low, vegetation will not establish, and 
the site will remain bare. 
 
Sedimentation rates will also depend on the tidal connection between the restored site and the sediment 
supply. Restored sites located in the interior of a larger marsh complex are connected to the estuary and 
sediment source by long and narrow slough channels. Tidal floodwaters that carry sediment to the site 
will not be recharged with sediment if the tidal excursion of water draining from the site down the 
connector slough on the ebb tide is insufficient to reach the sediment source. For this reason, sites that are 
removed from the sediment source will experience lower rates of estuarine sedimentation than sites with a 
direct connection to the sediment source. Also, tidal exchange and sediment supply to a restored site will 
be limited if the levee breaches or outboard slough channels are undersized compared to the large initial 
tidal prism of a subsided site. As the breaches or slough channels erode in response to the large tidal 
prism, tidal exchange and sediment supply will increase. 
 
Large deeply-subsided sites have the potential to act as major sediment sinks and alter the local sediment 
budget. As the site fills in with sediment, source concentrations and the rate of sedimentation at the site 
may be reduced. The long-term sustainability of sediment sources is uncertain given the declining trend in 
sediment supply from the Central Valley and the projected sediment demand from future restoration 
projects (Williams 2001a). Estimates of sedimentation rates should include an assessment of the impact of 
the restoration on the local sediment budget. 
 
For sites that are subsided by more than several feet below MTL, it may take a decade or more for the site 
to reach vegetation colonization elevations through natural estuarine sedimentation. Wind-wave 
conditions may delay sedimentation and vegetation colonization, potentially causing the site to remain as 
intertidal mudflat in the long-term. If the above factors are considered and the estimated rate of natural 
estuarine sedimentation is found to be too low to achieve target habitat conditions and restoration within 
the desired timeframe, the alternative strategy is to fill the site with imported material to raise site 
elevations and shorten the time required for site evolution.  
 
To raise the elevation requires filling with large volumes of easily transportable material. Dredged 
estuarine mud is the only effective and cheap source of large quantities of material. The cheapest way to 
handle large volumes of dredged material is through hydraulically pumping the material onto the site and 
allowing it to settle out before breaching the levee to the Bay. Placement of fill in this way results in a 
gradually sloping (at about 1,000:1) uniform plain. For large sites, this means there will be a significant 
variation in elevation throughout the site depending on where the discharge pipes are located. In placing 
the fill, there is little control over how the material is deposited, except by relocating discharge locations. 
After placement, it is difficult and expensive to rework deposited sediments.  
 
If the site is filled to the colonization elevation, marsh vegetation can propagate rapidly and wave action 
is significantly reduced. However, the higher the site is filled, the smaller the volume of the diurnal tides 
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flooding the site. This means that the higher the fill, the weaker the tidal scouring, and the longer it takes 
for tidal channels to form. With a lower filled site, natural sedimentation will eventually build up the 
marsh plain and allow for the unimpeded development of first and second order tidal channels. Therefore, 
there is a compromise between filling the site high for vegetation establishment and keeping it low 
enough for a tidal channel system to form. As described above, wetlands created with fill material placed 
too low in the tidal frame, coupled with high wave activity, may run the risk of delayed evolution. Also, 
filling the site with dredged material above the root zone of pioneer vegetation (approximately 0.3 m (1 
ft) below the surface of the mudflat) may result in substrate that is of lesser quality for successful 
colonization. Sediments that are naturally deposited may provide a better substrate than dredged material. 
 
Finally, in calculating the final elevation of the created surface, consideration should be given to assessing 
the amount of elevation loss that will take place with time as the fill material consolidates. Dredged 
material is commonly placed as liquefied slurry at densities lower than found on natural marshes. After 
placement, the slurry dewaters and consolidates resulting in a fall in surface elevation. The amount of 
subsidence depends upon the depth of fill and its water content as well as the bearing capacity of the 
underlying material. Because of their lower density and lesser bearing capacity, intertidal mudflats will 
consolidate to a greater degree than compacted bayland soils under the same depth of fill material. The 
rate of subsidence declines with time as both the fill and supporting sediments adjust. Full consolidation 
may take several years. 
 
The amount of subsurface adjustment to loading will vary around the Bay, increasing with the organic 
content of the soils as well as any changes in sediment texture (whether the deposit is sand grain or clay 
matrix-supported). In Suisun Bay and the Delta region, where mineral sedimentation rates are low and 
alluvium in much of the region consists primarily of organic material, considerable elevation change can 
take place under loading (Orr et al. 2003).  
 
EXPERIENCE FROM RESTORATION SITES 
 
Restoration sites in the San Francisco Bay have experienced a range of natural estuarine sedimentation 
rates due primarily to differing initial site elevations and proximity to sources of sediment supply. The 
highest rate of estuarine sedimentation has occurred at Carl’s Marsh, located at the mouth of the Petaluma 
River. A large mass of suspended sediment moves between the mouth of the Petaluma River and San 
Pablo Bay on the ebb and flood tides. This “cloud” of suspended sediment is maintained by successive 
erosion and deposition of sediments from San Pablo Bay mudflats and the bed of the Petaluma River 
(Schoellhamer et al. 2003). The initial rate of sedimentation at Carl’s Marsh was up to 0.6 m/yr (2 ft/yr) 
due to high suspended sediment concentrations during the wet El Niño year of 1997/1998 (WWR 2003). 
Sedimentation rates were observed to decrease after approximately three years as the site elevation 
increased and suspended sediment concentrations decreased after the El Niño event (WWR 2003). 
Average site elevations decreased between the fourth and fifth years after restoration due to the 
consolidation of initial layer of deposited material. Following this period, net accretion rates leveled off to 
0.04 m/yr (0.14 ft/yr). 
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Across the Petaluma River at Green Point Marsh, sedimentation rates have been three times less than at 
Carl’s Marsh. Although Green Point was restored eight years prior to Carl’s Marsh and started at an 
elevation approximately 0.6 m (2 ft) higher, today the elevation of Green Point is less than 0.15 m (0.5 ft) 
higher than Carl’s Marsh. Sediment supply to Green Point was initially limited by the narrow outboard 
slough channel, which eroded over five to ten years. Much of Green Point Marsh is vegetated—however, 
mudflat areas remain at the back of the site where the delivery of suspended sediment is limited. The 
sedimentation rates at Green Point and Carl’s Marsh are likely to converge as sedimentation rates at 
Carl’s Marsh level off. 
 
At Crissy Field, estuarine sedimentation is minimal because of a lack of sediment supply at the mouth of 
the Bay. Very little suspended sediment that is re-worked in other parts of the Bay or from Bay 
watersheds reaches the mouth.  
 
Early examples of the use of dredged material in marsh restoration were the Faber Tract (1972), Pond 3 
along the Alameda Creek Flood Control Channel (1974) and Muzzi Marsh (1975). Monitoring data of 
how vegetation and tidal channels had developed in these first generation projects were used in 
developing design guidelines for the “second generation” Sonoma Baylands project implemented in 1996 
(Williams and Florsheim 1994). In restoration sites where the material was placed close to the equilibrium 
marsh plain elevation (MHHW), these sites have not developed slough drainage systems, despite 
colonization by pickleweed and after 25 to 30 years of tidal action. This has been observed at “Inner” and 
“Outer” Muzzi Marsh, Faber Tract, Alameda Creek Pond 3, and other early dredged placement sites such 
as Bothin Marsh in Richardson Bay. 
 
Muzzi Marsh initially contained two distinct elevation zones separated by a training dike (Figure 13). The 
upper portion of Muzzi Marsh was originally filled to 2.1 m (7.1 ft) NAVD, an elevation higher than 
MHHW. In contrast, the lower unfilled portion of Muzzi Marsh ranged between 1.1 to 1.4 m (3.7 to 4.7 
ft) NAVD (between MTL and MHW). Only one small slough channel system developed naturally in the 
upper portion of Muzzi Marsh, the remainder contains few channels including those constructed as 
mosquito ditches. A dense network of sinuous slough channels exist on the mudflat and marsh plain in the 
lower portion of Muzzi Marsh, indicating that the lower elevation allowed for the successful evolution of 
the slough channel system and simultaneous development of the marsh plain. 
 
A similar situation exists at the Faber Tract where the upper portion of the site was filled to an elevation 
of about 2.1 m (7.0 ft) NAVD (between MHW and MHHW) and the lower portion of Faber Tract was 
filled to an elevation of 1.6 m (5.4 ft) NAVD (between MTL and MHW). While slough channels 
developed on the lower portion of Faber Tract, the lack of slough channels in the upper portion of the site 
indicates that it was filled too high. Figure 14 shows a schematic diagram of the relationship between 
slough channel development and marsh plain elevation in the Faber Tract. In this figure (Figure 14), the 
Faber Tract is divided into three zones: no channels with an estimated elevation after fill between about 
2.1 and 2.0 m (7.0 and 6.6 ft) NAVD; intermittent channels between 2.0 and 1.8 m (6.6 and 6.1 ft) 
NAVD; and abundant channels between 1.8 and 1.6 m (6.1 and 5.4 ft) NAVD. 
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The slope of the marsh plain generally determines the orientation of the slough channel drainage system. 
This can be seen at the Faber Tract, where the channels are generally oriented away from the location 
where dredged material was discharged. The dredged material discharge sites were high points that 
extend radially from the south edge of the marsh. This high portion of the marsh supports upland 
vegetation, but lacks slough channels. The gradient of the marsh is from south to north and the majority 
of the slough channels are oriented in the same direction—toward one large slough channel. This channel 
formed at the low point of the site and now serves as the major drainage for the diked marsh. The effect of 
the gradient on the orientation of slough channel development is also evident at Warm Springs where 
small slough channels have formed (similar to rill formation) in a direction toward the former major 
slough channel. 
 
Assessment of the evolution of the earlier sites (PWA 1991) led to a design recommendation for Sonoma 
Baylands of fill placement to 0.5 m (1.5 ft) below the marsh plain elevation of MHHW. However, in the 
11-hectare (27–acre) pilot unit fill material was only placed to an elevation of 1.0 m (3.1 ft) NAVD. In the 
main unit, the site was typically filled to 1.3 m (4.1 ft) NAVD and it has since subsided by about 0.15 m 
(0.5 ft) due to compaction as shown in Figure 15.  
 
Another consideration in placing fill is its effect on limiting wind wave action. Sites without fill, but with 
relatively high initial elevations above the colonization elevation, experienced rapid colonization by 
cordgrass and appear unaffected by wave activity. Pond 2A and Bair Island provide good examples of 
rapid vegetative colonization. Once cordgrass becomes established, it traps sediment and reduces wave 
energy. In contrast, in sites where the initial elevation is below the colonization elevation, it appears that 
internal wind waves can reduce rates of colonization. This can be seen at Slaughterhouse Point and the 
Nevada-shaped parcel. Only where wave power is low and suspended sediment concentrations are high, 
such as at Carl’s Marsh, does the colonization rate appear to be unimpeded. 
 
Figure 16 shows available data on the time required for appreciable vegetation colonization versus the 
initial elevation at the time of restoration. 
 
DESIGN RECOMMENDATIONS 
 

1. Estimate the expected rate of natural estuarine sedimentation in the site, accounting for 
proximity to sediment supply, consolidation of deposited material, compaction, and wind-
wave re-suspension of deposits. 

 
2. Determine the mature marsh plain elevation based on local tidal characteristics and adjacent 

reference marshes. 

 
3. Design fill placement to be about 0.3 m (1 ft) below the marsh plain elevation at the time of 

breaching to give sufficient tidal prism for channel development and to allow for the 
deposition of a substrate suitable for plant colonization. 
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4. For dredged fill sites, allow for compaction between time of placement and breaching. 

 
5. For hydraulically placed fill, identify a disposal location so that fill slopes will drain towards 

the main drainage network. 

 
6. Design the fill placement so that there are significant areas above the colonization elevation 

that will vegetate quickly and reduce wave impacts. 

 
7. In specifying particular elevations for grading, in general it should be noted that grading 

tolerances of +/-0.15 m (0.5 ft) can be expected on most sites. The placing of dredged 
material is particularly problematical and the slope of the dredge spoil should be anticipated 
as well as hydraulic sorting of the sediment. 

 
8. Close attention should be taken to the correct specification and use of vertical datums. 

 
4.2 QUESTION 2: SHOULD FILL BE REMOVED? 
 
THE PROBLEM 
 
A number of restoration sites are located on former tidal marshes that have been filled close to or above 
the normal elevation of a mature marsh plain. In these instances, a decision needs to be made whether fill 
should be removed, and if so, how much should be removed. This decision is a tradeoff between the cost 
of fill removal and disposal and the achievement of desired wetland functions within a given period. Most 
fill placement is recent and is often still gradually subsiding. It is possible that over long periods with 
gradually rising sea level a filled site may become intertidal.  
 
Removal and disposal of fill is costly. Thus, the goal would be to minimize the amount of fill removed 
from the site while ensuring that wetland functions are not impaired. The temptation has been to grade the 
site down to a typical marsh plain elevation of MHHW and restore tidal action.  
 
However, problems remain with this grading approach: it is difficult to precisely control grading—
especially in wet bay mud. Grading tolerances are typically plus or minus 0.15 m (0.5 ft). This means that 
large parts of the site might be graded too high for typical marsh plain vegetation, and uneven grading can 
create depressions impeding drainage. In addition, fill material is often compacted, may contain 
construction debris, or be nutrient poor, and may not consist of cohesive estuarine sediments, the soils 
most suitable for salt marsh plant species. Under these conditions, while vegetation may colonize these 
sites, the substrate is likely to impede the vigor of vegetation growth. In addition the small tidal prism 
means that erosion and deposition within any artificially graded channels is slow, and it may take a 
considerable time for them to adjust to a more natural form (see Section 4.6, Question 6: Should new tidal 
channels be excavated?).  
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A different approach is to excavate fill to the level of the bottom of the root zone, which is typically about 
0.3 m (1 ft) deep, and allow natural sedimentation to accumulate in order to provide a better substrate to 
support colonizing wetland plants, and to build the marsh plain back up to its equilibrium elevation (see 
Section 4.1 Question 1: Should the site be filled?). This means that eventually, over several decades, the 
marsh plain plants can grow in deposited estuarine muds deposited on top of the artificial fill. 
 
EXPERIENCE FROM RESTORED MARSHES 
 
A number of small, earlier restoration projects, such as Creekside Park in Corte Madera, Third Avenue 
Marsh in Foster City and the Palo Alto Yacht Harbor, have required removal of fill material. However, no 
monitoring data are available for these projects. More recent projects include Crissy Field, where fill was 
excavated to create a 7-hectare (17–acre) lagoon that is anticipated to evolve into a vegetated marsh, and 
Martin Luther King Jr. Regional Shoreline Wetlands Project in Oakland, where excavating fill material 
created 13 hectares (33 acres) of tidal marsh. 
 
We can obtain useful insight of the evolution of two dredged material filled sites that have been 
monitored, “Inner” Muzzi, and Pond 3 along Alameda Creek. Although neither of these sites had their 
marsh plains graded, within a few years of dredged material placement, large areas of these restoration 
sites had subsided to approximately the same elevation as the mature marsh plain. However, for many 
years pickleweed cover was sparse and stressed (Figure 17). After 25 years, the tidal drainage system has 
not evolved on these marsh plains beyond the initial artificial ditches (Figure 18). 
 
The more recent 4-hectare (10–acre) Martinez Marsh (Figure 19 and Figure 20) is a good example of how 
a graded fill restoration site evolves. Here, a sloping marsh plain was excavated to at least 0.3 m (1 ft) 
below MHHW, the elevation of nearby reference marshes, in order to eliminate pepper grass. After two 
years, approximately 0.15 m (0.5 ft) of estuarine sediment had deposited and vegetation had started to 
establish (Figure 21) and no pepper grass was colonizing the lower elevations. 
 
DESIGN RECOMMENDATIONS 
 

1. If most of the site is filled higher than 0.3 m (1 ft) below equilibrium, marsh plain elevations 
fill removal should be considered. 

 
2. Where the site to be graded is upland or compacted fill, excavate to 0.3 m (1 ft) below the 

anticipated equilibrium marsh plain elevations to permit natural sedimentation and 
unimpeded root growth. 

 
3. Assume that specified grading tolerances will be +/-0.15 m (0.5 ft). 

 
4. Remove any large pieces of construction debris. 

 
5. Design marsh plain grading to provide slight slope towards nearest tidal channels. 
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6. Close attention should be paid to the correct specification and use of vertical datums. 
 
4.3 QUESTION 3: SHOULD A LEVEE BREACH AND OUTBOARD CHANNEL BE 

EXCAVATED? 
 
THE PROBLEM 
 
In general, once a breach is made in a levee, natural scouring will eventually erode the breach and a 
channel across any outboard fringing marsh to reconnect the site to full tidal influence. The new 
connecting channel that forms eventually reaches equilibrium with the evolving tidal prism within the 
restored site. However, reaching this equilibrium may take decades, depending on the erodibility of the 
levee, the extent of outboard marsh, the size of the initial levee breach, and sedimentation rates within the 
site. During this period tidal amplitude and circulation will be limited, sedimentation rates low, and wave 
erosion of perimeter levees high. If the objective of the restoration is to maximize the rate of marsh 
evolution and marsh functions, it is desirable to restore full tidal action to the site as quickly as possible. 
Full tidal action establishes the appropriate hydroperiod to which marsh plants are adapted and also 
maximizes input of estuarine sediments carried in on the flood tide. Full tidal action can be achieved by 
excavating the levee breach (as well as lowering the remaining part of the levee—see Section 4.5 
Question 5: Should the bayfront levee be lowered?) and outboard channel to the Bay large enough so they 
do not constrict the hydraulics of tidal flows to the site.  
 

In practice, many restoration sites are separated from the tidal source of the Bay by marsh plains outboard 
of the levees, or by silted up tidal channels, both of which can provide valuable wetland habitat in their 
own right. Excavating a full-sized tidal channel through the levee and outboard marsh may result in large 
costs for removal and disposal of Bay mud. To reduce these costs and disruption of existing habitat, it is 
possible to excavate a smaller channel, or to take advantage of a small pre-existing channel, and then let 
the tidal flows scour these channels to their ultimate dimensions in equilibrium with the tidal prism of the 
restoring site. The design decision then becomes a tradeoff: on the one side, between high cost and habitat 
disturbance, and on the other, by a time delay before the site achieves a full tidal range and vegetated 
marsh functions.  
 
To predict the time delay we need to recognize that as the restoration site evolves, the tidal prism and 
equilibrium channel dimensions will change. At first, the tidal prism may be reduced by the hydraulic 
constriction of the entrance channel and breach. As the channel scours and deepens, the tidal prism will 
increase and then decrease again due to intertidal siltation in the restoration site. This means an 
undersized channel or breach first scours and increases in size and then might eventually silt in and 
diminish in size. This rate of change is further complicated by differential rates of erosion of marsh 
sediments and compacted levee materials. 
 
The location of the levee breach and outboard channel has been mainly determined by the need to 
minimize excavation requirements. This is done by selecting a breach location with only a short distance 
across an existing marsh to a major slough channel, locating the breach to rejuvenate a pre-existing 
internal drainage system, or locating the breach to adjoin and take advantage of an existing marsh tidal 
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channel. In addition, breach and channel locations can influence salinity and sedimentation rates in the 
restored sites. Typically, levee breaches upstream on a fresh water-influenced tidal slough will encourage 
a lower salinity regime in the restoration site; breaches closer to tidal waters with high turbidity, such as 
wave-exposed shallows, will encourage higher rates of sedimentation. 
 
There are a few locations in San Francisco Bay where strong wave action forms ebb tide sand shoals 
across the mouth of tidal channels (e.g. Oro Loma, Crissy Field). These shoals can naturally limit low tide 
drainage and must be taken into account in the restoration design. 
 
EXPERIENCE FROM RESTORED MARSHES 
 
Over the last 20 years, numerous surveys of the morphology of tidal channels in San Francisco Bay 
marshes have enabled us to develop empirical hydraulic geometry relationships that correlate the 
equilibrium channel depth, top width, and cross-sectional area with tidal prism. These relationships are 
described in Williams et al. 2002 (Appendix A.2), and provide a useful tool for designing tidal channel 
and levee breach dimensions.  
 
Long-term monitoring of the Warm Springs and Sonoma Baylands projects provide valuable insights on 
how quickly and the manner in which undersized outboard channels and levee breaches erode towards 
their equilibrium geometry.  
 
The 81-hectare (200-acre) Warm Springs project was breached in 1986 at the south end directly to Coyote 
Slough and at the north end to Mud Slough (Figure 22). For the first four years, the tidal connection to 
Mud Slough was largely ineffective because the levee breach was separated from the slough by about 120 
m (400 ft) of outboard marsh plain that was densely colonized with alkali bulrush. This meant that almost 
all the tidal flows were conveyed through the South Breach to Coyote Slough. The South Breach was 
excavated as a 15 m (50 ft)-wide notch (Figure 23). Sixteen months later, the breach to Coyote Slough 
had widened to more than 30 m (100 ft) and deepened a further 1.5 m (5 ft), thus increasing its effective 
flow area about 10 times. Over the next seven years, the breach doubled in area again and stabilized close 
to its equilibrium geometry. Six months later, tide monitoring in the site (Figure 24) showed a muted tide 
about 60% of the full diurnal range; 18 months later as the breach eroded the tide was about 90% of the 
full range (Figure 25); five years later, the tides inside and outside the site were essentially the same 
(Figure 26). 
 
Reintroduction of tidal action through the South Breach significantly increased the tidal prism in Coyote 
Slough, resulting in rapid deepening and then widening. In the first year the Coyote Slough channel had 
deepened about 1.5 m (5 ft), from 3 to 4.5 m (10 to 15 ft) below MHHW (Figure 27). After nine years the 
channel depth had reached equilibrium at about 5.8 m (19 ft) deep. This increase in depth undercut the 
banks resulting in large slump blocks that slowly slid into the channel and were eroded away, resulting in 
progressive widening. Only after 16 years did the channel reach equilibrium at about twice the original 
cross sectional area and with channel bank slopes of approximately 4:1. Much of the channel widening 
and increase in cross section occurred after the tidal prism upstream was diminishing due to the rapid 
sedimentation in the restored site. Over time, Coyote Slough is expected to now reduce in size in response 
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to this reduction in tidal prism. The evolutionary trajectory of the Coyote Creek channel is shown in 
Figure 28. 
 
The Mud Slough channel eroded in a similar way after the North Breach channel eroded through the 
fringing marsh plain four years after initial breaching. Over the following five years, it deepened from 
about 2.1 to 3.9 m (7 to 13 ft). Then over the next four years, it widened significantly as banks slumped 
into the channel (Figure 29).  
 
Because Coyote Slough is now much larger than Mud Slough it has permanently captured most of the 
tidal circulation of the site. The tidal “null” point between the sloughs is close to the north breach and an 
emerging mudflat has separated the two tidal drainage systems. 
 
The design of the Sonoma Baylands project in the early 1990s was informed by the monitoring 
experience of other marshes including observations of the first eight years of evolution at Warm Springs. 
In the original plan for Sonoma Baylands, the levee breaches and excavated channels through the fringing 
marsh from the Pilot and Main units to the Bay were to be sized to the expected equilibrium dimension 
appropriate for the tidal prism expected in the mature marsh, instead of “notching” as was done at Warm 
Springs’ South Breach. It was anticipated that immediately after breaching, the initial tidal prism would 
be large and result in erosion, which would then be followed by sedimentation. 
 
However, although the levee breaches were excavated to the equilibrium dimension to remove compacted 
levee material, a decision was made to not excavate the connecting channel across the fringing marsh 
because of its cost and adverse ecologic impacts. This meant that after breaching, tidal flows could only 
enter the site through two small pre-existing channels: a 420 m (1,400 ft)-long channel to the pilot unit 
and an approximately 300 m (1,000 ft)-long channel to the main unit. Tidal flows were further restricted 
by the unusually high elevation of the centennial fringing marsh on the north shore of San Pablo Bay—
about 0.15 m (0.5 ft) above MHHW—that prevented most spring tides flowing across the marsh plain 
into the restoration sites. 
 
The hydraulic constriction of the tidal channel and the large potential tidal prism of the site meant that 
tides were initially severely muted at Sonoma Baylands, thus limiting the actual tidal prism moving in and 
out of the two restoration areas. Over the last eight years, the channels have eroded and expanded the tidal 
range in the two areas, thus increasing the actual tidal prism. This, in turn, tends to increase the rate of 
erosion of the channels. As tidal range increased, sedimentation rates increased. The increased 
sedimentation rates will now begin to reduce the tidal prism and will eventually bring the channel 
dimensions into equilibrium. Detailed monitoring of the site (Appendix B.6) provides valuable 
information on the rate of evolution and erosion of the breach and outboard channels.  
 
The excavated levee breaches first silted in and then started eroding again as tidal prism increased (Figure 
30). The freshly deposited material in the levee breach appeared to be more erodible than the marsh plain 
sediments, thus allowing the levee breach to enlarge more quickly than the outboard channel (Figure 31). 
Once the channel had started incising into unexcavated material in the breach, the difference in erosion 
rates disappeared. The evolutionary trajectory of the Sonoma Baylands channels is shown in Figure 28. 
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In both the pilot and main unit channel, the same pattern of erosion was observed as in Coyote Slough. 
First, channel deepening occurs that induces bank slumping and widening as shown in Figure 32. In the 
Pilot unit, channel deepening was impeded for the first three years by construction debris that had been 
dumped in the channel. After removal, the depth has increased from about 1.2 m (4 ft) below MHHW to 
about 2.7 m (9 ft) in eight years and the cross section area has increased close to the equilibrium value as 
shown in Figure 28. However, because channel banks have been destabilized, it is possible for the 
channel to widen beyond the equilibrium area. With the erosion of the channel the diurnal tidal range 
within the pilot unit is approximately 60% of the full range. Over the first six years, the main unit channel 
eroded gradually and then rapidly accelerated as the diurnal tidal prism started increasing. After eight 
years, the channel has increased in depth from approximately 0.9 to 3.7 m (3 to 12 ft) below MHHW and 
has increased in cross sectional area by an order of magnitude (Figure 28). Large bank slumping cracks 
are observed on the marsh plain within the 4:1 slope intersection zone (Figure 33). 
 
The main unit channel discharged onto a 300 m (1,000 ft)-wide mudflat. After approximately three years, 
the tidal prism had increased enough to scour a deep channel across this mudflat. The mudflat channel has 
increased in size in parallel with erosion of the marsh connector channel. Similarly, at Cooley Landing, 
the original channels dissipated on an extensive mudflat. Within the first six months after restoration, a 
channel had formed across these mudflats (Figure 34). It does not appear that the scouring of channels on 
mudflats is a constraint on site evolution. 
 
The location of the breaches at Warm Springs was determined by several factors. In order to take 
advantage of anticipated scouring of the channel to improve flood conveyance, the South Breach was 
located where fringing marsh was at a minimum and as far south on Coyote Slough as possible. In 
addition, this location maximized the length of large subtidal channel habitat within the restoring marsh. 
The North Breach was originally located immediately adjacent to Mud Slough where there was a 
minimum of fringing marsh, but was later relocated by the civil engineers responsible for final design.  
 
Similarly, but on a smaller scale, flow from Martinez Marsh in Suisun Bay was directed through 
Alhambra Creek to create environmentally beneficial flood protection measures for the City of Martinez. 
Tidal flows were directed through the lower reaches of the river, which not only enhanced and widened 
the riparian corridor, but also assisted in sustaining a channel form to support floodwater conveyance 
during winter months. 
 
At Sonoma Baylands, the breaches were located where it was originally anticipated the outboard channels 
would be excavated. For the 110-hectare (270–acre) main unit, a single breach was selected deliberately 
to concentrate tidal flows to ensure the development of a single high order tidal drainage system within 
the site. At Cooley Landing, the bayward perimeter levee was breached in two locations to reactivate the 
remnant complex tidal drainage system that still existed in the old salt pond.  
 
At Crissy Field the breach is located down drift of a beach groin because a strong littoral drift 
significantly effects the entrance channel hydraulics leading to closure during periods of high swells and 
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neap tides (PWA 2004). This is due to the location of the site at the mouth of the Bay, close to the Golden 
Gate, and not typical of the majority of restorations in San Francisco Bay. 
 
In all restoration sites with multiple breaches, slough channels may be initially connected, but sediment 
deposition creates watershed divides that isolate drainage systems for each breach. This can be seen in 
Carl’s Marsh (Figure 35) and Warm Springs (Figure 22). 
 
DESIGN RECOMMENDATIONS 
 

1. The decision whether a breach and outboard channel needs to be excavated depends on the 
tradeoff between the cost of excavation and the rate of evolution and achievement of desired 
wetland functions. 

 
2. Sizing levee breaches and channel dimensions requires estimating both initial post-restoration and 

long-term equilibrium channel dimensions using empirical hydraulic geometry relationships 
(Appendix A.2). It should be noted that there can be a significant error band in these predictions 
and, wherever possible, they should be calibrated with data on similar marshes in the vicinity of 
the restoration site. The consequences of overestimating or underestimating equilibrium or 
transient channel dimensions need to be considered in the design. Post-restoration or short-term 
channel dimensions are calculated using the tidal prism of flooded site upon breaching. Long-
term equilibrium channel dimensions can be inferred from estimations of the predicted marsh 
drainage area; assuming that a mature vegetated marsh will eventually evolve.  

 
3. Constructing levee breaches and connecting channels to the predicted larger sizes for the initial 

post breach tidal prism is generally not necessary if the channel and breach is free to erode. 
 

4. A levee breach should be excavated to at least the smaller long-term equilibrium dimensions to 
remove compacted material. This size breach will usually allow for a large enough tidal prism to 
quickly erode the breach to a larger size, but this should be checked by hydrodynamic analysis or 
modeling. The rate of breach erosion is site specific and determined by the volume of the body of 
water available to scour through the breach. 

 
5. In general, it is also preferable to construct connecting channels to reflect long-term equilibrium 

dimensions to minimize excavation costs and to allow them to naturally evolve towards 
equilibrium dimensions, which are likely to be smaller than the estimated short-term dimensions. 

 
6. It is more important to excavate channels and breaches to their anticipated depth, and then allow 

for bank slumping to the angle of repose, than to replicate a specific cross section. 
 

7. In designing connector channels it should be anticipated that they may scour to the maximum size 
appropriate for the initial tidal prism and may widen beyond predicted equilibrium geometry due 
to bank slumping. 
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8. In determining breach location, the following factors should be considered: 
 

• Minimizing the length of connecting channel required across existing fringing marshes; 

• Maximize opportunities for creating single large complex tidal drainage systems within the 
marsh rather than multiple smaller systems. Multiple breaches will ultimately create multiple 
separate tidal drainage systems within the site. Ideally, marsh watershed areas should be large 
enough to sustain high order, subtidal channel habitat within the marsh; 

• Maximize opportunities of deepening existing tidal channels for navigation and flood level 
reduction; 

• Allow for rejuvenation of remnant tidal drainage features on the restored site. Where 
possible, the breach should be sited to take full advantage of any opportunities to reestablish a 
connection between an existing remnant channel network within the restoration site and the 
truncated higher order channel on the natural marsh. In this respect, the location of the 
breaches, the location of any internal watersheds and the internal channel network should be 
seen as an integrated design; 

• Compatibility with public and maintenance access;  

• Proximity to high suspended sediment source—for example, adjacent mud flats where wind 
waves resuspend fine sediments back into the water column or in areas close to estuary 
entrapments zones; and  

• Minimize risk of remobilizing contaminated sediments. For example, consider locating the 
breach away from outboard slough channels with known sources of contaminated, erodible 
sediments. 

 
4.4 QUESTION 4: SHOULD WAVE BREAKS BE CONSTRUCTED? 
 
THE PROBLEM 
 
Subsided sites evolve into vegetated marsh plains by progressively accumulating cohesive sediment until 
the mudflats reach an elevation at which vegetation can establish. In large wind-exposed sites, wind wave 
action can slow or stop this sedimentary process by inhibiting deposition, or, if wave action is sufficiently 
high, previously deposited sediments are scoured and then are transported out of the site on the ebb tide. 
 
For given site conditions, the potential for wind-induced inhibition of net deposition rates generally 
increases as mudflat elevations increase and water depths decrease, causing even small waves to break. 
This means that vulnerability to sediment disturbance and re-working from wave action increases as site 
(or rather fetch) size increase, as mudflats build in elevation, and water depths decrease. For a location 
within a site for a particular wave climate, net deposition rates will tend to progressively decrease and 
approach zero at a particular elevation, as illustrated in Figure 10. If this elevation is above the typical 
colonization elevation, vegetation will eventually become established, as it appears that the pioneer 
colonizers, Pacific cordgrass or alkali bulrush, can withstand the wave action typically experienced in the 
Bay. The presence of vegetation then promotes further marsh plain elevation building through increased 
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sedimentation, protection from scour, and accumulation of organic material. Once an extensive vegetated 
marsh plain develops, it will dissipate wave energy and prevent the scouring of accumulated sediment on 
the marsh plain (French and Stoddart 1992). 
 
However, if a given wind wave climate dictates an equilibrium mudflat elevation below the colonization 
elevation, the site will remain bare mudflats. If this is an unacceptable outcome, wind wave effects will 
need to be reduced. This can be done in two ways: by filling the site to above the colonization elevation 
or constructing wind wave breaks within the site. 
 
Wind wave breaks can be graded as high elevation areas, berms, or peninsulas. These can be designed to 
define tidal watersheds, guide wind driven circulation, focus sedimentation in preferred locations, and 
guide the shape and location of the evolving tidal channel network. High elevation areas or berms that are 
planted with or colonized by marsh vegetation can provide an alternate means of reducing wind wave 
action. Wave break design will be a trade-off between height, width, slope, vegetation, cost, and design 
objectives. For example, vegetated wave breaks that are lower within the tidal frame would need to be 
broader and have gentler slopes than a higher wave break. 
 
In the 1970s, the USACE conducted extensive experiments in the planting of smooth cordgrass in East 
coast estuaries for wave energy dissipation. This technique has been applied extensively in the 
Chesapeake Bay area. Similar experiments using the Pacific cordgrass in San Francisco Bay were also 
successful in stabilizing shorelines, except for severe wind wave conditions (Newcombe 1979 p.108). 
Generally, it appears that the effectiveness of marsh plants is dependent upon stem height and density and 
the depth to which plants grow in the tidal frame as well as the wave energy. The use of limited areas of 
Pacific cordgrass as internal wave breaks for substrate stabilization within a subsided site has not been 
tested and is not expected to be effective. However, berms with slopes colonized by Pacific cordgrass are 
desirable for berm stabilization and habitat. It is possible that bands of bulrush could be encouraged to 
grow in appropriate locations to reduce wave energy (see Section 4.11 Question 11: Should plants be 
planted?). If bulrush is planted too low within the tidal frame, it will not survive after tidal action is 
restored. Vegetation detritus on the marsh surface may encourage sedimentation within a site by 
providing additional bed roughness. However, this method has not been tested and its effectiveness is 
uncertain. 
 
For all restoration sites, the effect of wind wave action has to be considered in restoration design. The 
most extreme wave conditions would be experienced if bayfront levees were removed and subsided sites 
were fully exposed to storm waves generated at high tide across the Bay. This is a major constraint and is 
addressed in Section 4.5 Question 5: Should the bayfront levee be lowered? More typically, restoration 
sites are protected from large waves generated in the Bay and it is wave action generated within the site 
that needs to be considered. 
 
EXPERIENCE FROM RESTORED MARSHES 
 
The interaction of waves on intertidal cohesive mudflats is a complex and poorly defined process. 
Analytic methods, such as those incorporated in numerical models, can be used to develop insight into 
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how a site may evolve, but need to be calibrated with local conditions. More typically, empirical methods 
are used to make decisions on whether filling or wave breaks are needed. 
 
Williams and Orr have collated the available limited information on the delay in site evolution of 
breached subsided sites due to wind wave effects (Williams and Orr 2002). As an indicator of the rate of 
evolution of the site, they used the time from initial flooding of a mudflat to pioneer colonization on 
emerging mudflats. The effect of wind waves was characterized by a wave power index proportional to 
the product of wave energy and period, which, in turn, is dependent upon the fetch length, strength, and 
duration of winds. Figure 36 shows the vegetative state of the fully tidal sites as a function of wave power 
index and initial elevation. 
 
Sites with initial elevations close to the colonization elevation (above approximately +0.3 m [+1 ft] above 
MTL) experienced rapid colonization by cordgrass. Pond 2A and Bair Island are good examples of 
locations where rapid colonization has occurred. Although high wave power may inhibit sedimentation in 
such sites, this was not observed in these sites. Once cordgrass becomes established, it traps sediment and 
reduces wave energy. In contrast, for sites below colonization elevation, it appears that internal wind 
waves can reduce rates of sedimentation. No large, deeply subsided site in high wave energy conditions 
has yet achieved a vegetated marsh plain after approximately 20 years. 
 
Sedimentation rates at two of the higher energy sitesNevada-Shaped Parcel and Slaughterhouse 
Pointhave been very limited and, after 15 years mudflat elevations are still too low for colonization 
even though these sites were not originally deeply subsided (Figure 37 and Figure 38). However, the 
retardation may not be solely due to wind wave activity. At Slaughterhouse, an initially damped tidal 
range and probable lower suspended sediment supply could also have delayed rates of development. At 
the Nevada site, lower suspended sediment concentrations may be a factor. In contrast, Carl’s Marsh, 
although deeply subsided, has small wind fetches and high sedimentation rates and has not been affected 
by wind wave action. 
 
Wave break peninsulas were included in Sonoma Baylands. These were designed to minimize wave 
energy effects on sedimentation and site evolution by reducing fetch lengths to approximately 300 m 
(1,000 ft). Without these peninsulas, fetch lengths would have been approximately 600 – 1,200 m (2,000 
– 4,000 ft). These peninsulas were graded as continuous berms high enough to dissipate wave energy at 
high tide levels (at about 0.6 m (2 ft) above MHHW) during the period before extensive vegetation had 
become established. It was intended that these peninsulas would eventually erode, subside and disappear 
in the evolving marsh plain over the next 50 years. The spacing of the peninsulas was determined by a 
reconnaissance of other sites to determine minimum fetch lengths that were clearly effecting 
sedimentation (PWA 1991). Subsequent experience, such as at Tolay Creek, where fetch lengths are 
approximately 250 m (800 ft), indicates this minimum spacing may be too optimistic. 
 
The layout of the peninsulas at Sonoma Baylands was also intended to define channel development and 
sedimentation patterns within the site.  
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It has taken six to eight years for a significant tidal range to develop on the site because of the time 
required to erode the constricted connecting channel to the Bay. During this period, the site was 
permanently flooded and wave action eroded a number of the more exposed peninsulas (Figure 39) 
instead of the flood control levee. Now that full tidal action is occurring, the peninsulas are functioning as 
intended. This can be seen from the differential sedimentation rates of the sheltered versus less sheltered 
portions of the site (Figure 40). 
 
Wave break peninsulas can have additional functions, such as providing edge ecotones and refugia. At 
Sonoma Baylands, a band of pickleweed formed around the site perimeter and along the peninsula edges 
within the first two years and expanded outward as increased tidal exchanges exposed more mudflat area. 
Initially, cordgrass colonized the sheltered angles of a peninsula in the pilot unit and gradually has 
established along the perimeter below the pickleweed band. However, in common with other areas within 
the transition zone (see Section 4.9 Question 9: How should the wetland-upland transition zones be 
designed?), exotic plant species have established on the upper parts of the peninsulas.  
 
Portions of the peninsulas have become very desirable bird roosting and nesting areas. However, because 
tidal action was limited, other portions have provided habitat for rodent burrows. Now that the tidal range 
is increasing, it is likely these habitats will be flooded. Concerns have also been raised that the peninsulas 
provide access corridors for predators, such as red fox, which are present in the area. For this reason the 
peninsulas were disconnected from the levee (Figure 41).  
 
DESIGN RECOMMENDATIONS 
 

1. For each site, wind wave action needs to be evaluated to determine whether it needs to be 
considered in the design. In general, if fetch lengths are smaller than about 300 m (1,000 ft) and 
elevations are above the colonization elevation, wave effects are usually minor. If fetch lengths 
are greater than about 300 m (1,000 ft) and the site is above the colonization elevation potential, 
wave erosion of perimeter levees needs to be considered during the period until the marsh plain is 
fully vegetated. If fetch lengths are greater than about 300 m (1,000 ft) and the site is more deeply 
subsided, filling or grading to create wave breaks needs to be considered. 

 
2. There are two different strategies for designing wave breaks: 

 
● The strategy adopted at Sonoma Baylands is intended to minimize the effects of wave action 

on net sedimentation and therefore maximize rate of evolution to a vegetated marsh. 
● An alternative strategy is to limit wave action to ensure only that net sedimentation is positive 

and that the site will eventually evolve to a vegetated marsh. This allows for larger spacing of 
wave breaks than the former strategy and the possibly of a longer period when the site 
supports emerging intertidal mudflats. 

 
3. Wave breaks should be designed to dissipate most of the wave energy during the period until the 

site becomes fully vegetated. This can be done by grading a berm to the appropriate dimensions 
(i.e. high enough and/or wide enough). In general, it is more cost effective to grade a higher 
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narrow berm than a broad shallow one. Encouraging the establishment of marsh vegetation on 
berm slopes will provide additional wave dissipation.  A minimum width of vegetated marsh of 
10 m (30 ft) on berm slopes of 1:15 will provide adequate wave dissipation (Knutson 1990 p.95). 

 
4. The wave break crest should be constructed as low as possible within the tidal frame but high 

enough to trip and break waves passing over during extreme tides. If the wave break is too high, 
upland exotic vegetation may establish itself and predators may use the peninsula for access. 

 
5. Because locally generated waves have a short period and wavelength is small, wave energy 

dissipation due to refraction is negligible. Therefore, wave breaks need to be either continuous 
features, or if discontinuous “islands” they need to completely block waves from the dominant 
fetch directions because there would be minimal dissipation of wave energy due to refraction 
through the gaps. 

 
6. Because the dominant fetch directions are not usually well defined, it is preferable to configure 

wave breaks as curved features that offer protection from a variety of wave directions. 
 

7. Allowance must be made for the initial subsidence of the wave break peninsula. 
 

8. Allowance does not need to be made for rising sea levels since the role of the peninsulas 
diminishes as the site elevations evolve. 

 
9. The design of the spacing of wave breaks depends upon the wind climate of the site. 

 
10. Wave breaks are essentially sacrificial structures; they are only needed until vegetation is 

established along the edges of wave breaks and marsh plain elevations have accreted. There is no 
need to armor the slope unless the wave breaks perform some other function, such as guiding 
where channels are forming. 

 
4.5 QUESTION 5: SHOULD THE BAYFRONT LEVEE BE LOWERED? 
 
THE PROBLEM 
 
Most restoration projects are subsided sites separated from the Bay or a major slough by levees. These 
levees are usually constructed of sidecast, dried, and compacted Bay mud. The bayfront levee not only 
acts to block tidal flows across the marsh, for which it was originally designed, but also acts as a barrier 
for a number of other processes. The levee blocks the movement of water, sediment, organic plant 
material, and detritus that would otherwise move between the outboard mudflat and the marsh on spring 
tides or during storm surges. Therefore, the persistence of a levee limits the ecological connectivity of the 
marsh with the estuary. 
 
At the same time, the remnant bayfront levee may provide protection to the evolving site from the erosive 
effects of externally generated waves. The effects of this wave action can be severe, as discussed above in 
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Section 4.4 Question 4: Should wave breaks be constructed? For deeply subsided restored sites, remnant 
levees therefore perform a valuable function of reducing incident wind wave energy and allowing 
sedimentation to occur within the site until marsh vegetation can colonize. In addition, the outboard levee 
may reduce wave energy that might otherwise erode the inboard levee. The need for the outboard levee 
diminishes as the surface of the evolving marsh gains elevation relative to the tidal frame. Once high 
marsh is established, shallow water depths, high canopy wave baffling, root binding, and high sediment 
shear strengths ensure greater resistance of the marsh to wave erosion. Once the site is fully colonized, the 
outboard levee becomes a redundant feature. Over time the relic levee will erode and subside into the 
marsh plain. 
 
Remnant or relic bayfront levees can provide other opportunities and constraints. Levees may be 
maintained in place to provide for trails and public access. They can provide transitional marsh habitat 
(see Section 4.9 Question 9: How should the wetland-upland transition zones be designed) as well as a 
colonization corridor for exotic plants. Remnant levees can also provide refugia for birds and wildlife. 
They may also provide corridors for access to the marsh interior and den-sites for predators (e.g. red fox 
and feral cats). 
 
Therefore, there is a tradeoff between leaving the levee in place to provide sufficient protection from 
waves—allowing sedimentation to occur during the initial evolution of the site—and reconnecting the 
geomorphic unit and ecological processes in the long-term so that the marsh is sustainable. 
 
EXPERIENCE FROM RESTORED MARSHES 
 
At Muzzi Marsh, the levee was left in place (Figure 42). In Corte Madera Bay, there are long fetches to 
the east and wave energy can be high. This has caused continual retreat of the shoreline and erosion of the 
levee over the last 25 years. During this period, protection provided by the levee has allowed 
sedimentation to occur and vegetation to establish. Large sections of the levee have now disintegrated and 
the newly created marsh plain is starting to erode (Figure 43 to Figure 45). However, more than 
approximately 600 m (2,000 ft) of new marsh plain has formed in front of and now protects the new flood 
control levee to the west. If the remnant levee had been removed at the time of restoration, it is probable 
that large areas of this site would have remained mudflat. A portion of remnant levee is now utilized as a 
seal haul-out area because of its isolation. 
 
The Sonoma Baylands project is also located on the bay margin where fetch lengths and winter storms 
can create intense wave action. However, in the century since the original levee was constructed, a 300 m 
(1,000 ft)-wide fringing marsh has formed that dissipates wave energy. In this project the bayfront levee 
was lowered to approximately the elevation of the outboard marsh. However, because of compacted soils, 
uneven topography, and limited tidal range, the vegetation that has colonized includes many upland 
species.  
 
At Cooley Landing sections of the bayfront levee have been lowered to 0.15 m (0.5 ft) above MHHW to 
provide a source of fill for construction and to restore high marsh habitat (Figure 46). The levee design 
elevation 2.3 m (7.5 ft) NAVD was selected to provide as much wave-breaking function as possible, 
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while still being low enough for high marsh vegetation to establish upon it. The previously existing levee 
crest was between approximately 2.6 m and 3.5 m (9 and 12 ft) NAVD and supported primarily exotic 
upland vegetation. Lowering of portions of the bayfront levee has allowed marsh front exchange of 
sediment-laden waters during spring and storm surge tides. 
 
DESIGN RECOMMENDATIONS 
 

1. If incident wave energy propagating into the site is likely to be high enough to retard 
sedimentation, then the levee should be left in place but its crest elevation may be lowered. The 
levee has only to reduce wave energy and not act as a complete barrier. 

 
2. A wide outboard marsh and mudflat will dissipate significant proportions of incident wind wave 

energy propagating from the Bay. In this case, protection of the site by a levee may not be 
necessary. Findings from the U.K. (e.g. Moeller et al. 1996) suggest that at sites fronted by 
extensive marsh (greater than 100 m [300 ft] in width), the requirements for a bayfront levee are 
considerably less.  

 
3. If the levee is removed and the desire is to achieve a seamless vegetated marsh plain, it may be 

necessary to over-excavate the compacted levee material by up to 0.3 m (1 ft) and allow natural 
sedimentation to restore suitable elevations and substrate. 

 
4. If portions of the levee are retained, they can be graded in a way that creates a wetland-upland 

transitional habitat (see Section 4.9 Question 9: How should the wetland-upland transition zones 
be designed?). 

 
4.6 QUESTION 6: SHOULD NEW TIDAL CHANNELS BE EXCAVATED? 
 
THE PROBLEM 
 
Where restoration sites have been filled, or where surface sediments have been compacted, tidal channels 
may need to be excavated. A higher elevation of fill material within the tidal frame will lead to a smaller 
tidal prism and decreased tidal scouring once tidal action is reintroduced. If tidal scouring is limited, it 
may take many decades for tidal channels to form naturally on the fill material. If the restoration site is a 
diked former tidal marsh that has been farmed, the surface soils may have become compacted and more 
erosion resistant, thus retarding the formation of a tidal drainage system by natural scouring. 
 
The decision to excavate channels is a trade off between the cost of excavating fill material low enough 
to allow appreciable natural scouring, versus the cost of excavating channels and the longer evolution of 
the tidal drainage system. Highly compacted filled sites may take hundreds of years for sea level rise and 
marsh accretion to create an appropriate tidal drainage system.  

 
Earthwork is usually the largest part of construction costs for a restoration project and channel excavation 
can add disproportionately to the costs for fill removal and disposal. If the fill or underlying material is 
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Bay mud, the limited bearing capacity makes using heavy equipment difficult and may require placement 
of temporary load bearing pads or mattresses for construction equipment to work from. In addition, 
slumping of the banks of cut channels is difficult to predict or control. It is particularly difficult to 
excavate small first and second order channels within a reasonable tolerance using standard construction 
equipment, and sinuous or curved channels can be difficult to survey and stake out for construction crews. 
 
RESTORATION EXPERIENCE 
 
During the 1970s, several sites that were filled with dredged material were restored to tidal action (e.g. 
Muzzi Marsh, Alameda Creek Pond 3, and Faber Tract). In all of these sites, the evolution of the natural 
drainage system was impeded. At “Inner” Muzzi and Alameda Creek Pond 3, dredged material had been 
placed to high elevations, at or above MHHW, and large areas remained poorly drained and barren for 
many years. In both these projects, large channels were later excavated in the dredged material to improve 
tidal circulation. However, 30 years later, even though the marsh plains have now been colonized 
extensively by pickleweed and are close to the elevations of mature marshes nearby, their tidal drainage 
system is not well developed. At Muzzi Marsh, the channel excavation was done “in the wet,” but proved 
extremely difficult to execute and was abandoned when partially complete. Subsequently, most of these 
large channels have silted in to varying degrees. In addition to these large excavated channels at Muzzi 
Marsh, small mosquito ditch channels were dug and excavated material sidecast to drain ponded areas on 
the marsh plain (Figure 44 and Figure 45).  
 
At Faber Tract, hydraulically pumped dredged material was deposited in a series of coalesced 
depositional cones that sloped from supratidal to low intertidal elevations. A complex tidal channel 
system developed on the lower portions of the site, first on freshly deposited mud and then incised into 
the underlying dredged material. However, fill material at high elevation clearly limited channel 
formation and surveys showed that wherever the original fill material was higher than about 0.3 m (1 ft) 
below MHHW, no tidal channels formed. 
 
This information was used in specifying target dredged material fill elevations for the Sonoma Baylands 
Project. Although the constricted outboard tidal channel retarded evolution, a dendritic channel system is 
now forming on the emerging mudflats on the site and is incising into the placed dredged material. 
However, in some locations the deepening bed of the channel has eroded down to the original compacted 
field soils and this may further retard the rate of deepening (Figure 47). 
 
Some restoration sites have been filled with upland fill or construction debris (e.g. Martinez and Martin 
Luther King). At the small Martinez Marsh, because the fill material was not estuarine sediment and 
could be erosion resistant, a complete dendritic tidal drainage system was excavated in the fill material to 
replicate typical natural tidal drainage density and sinuosity (Figure 19). Hydraulic geometry correlations 
with mature marshes provided minimum channel dimensions. Because of limitations on construction 
equipment the first and second order channels in this system were over-excavated and, since breaching, 
are rapidly silting in. 
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DESIGN RECOMMENDATIONS 
 

1. Channel excavation on filled sites should be considered if typical fill elevations are higher than 
0.3 m (1 ft) below MHHW. 

 

2. Excavated channel dimensions should be based on hydraulic geometry relationships derived from 
mature reference marshes (Williams et al. 2002). 

 

3. Channel density and sinuosity should be determined from nearby reference marshes. 

 

4. Cost savings can be achieved by specifying depth and bottom width of channels and allowing 
channel banks to stabilize as they are cut, rather than requiring a design side slope. 

 

5. Adjacent marsh plains should be gently sloped to the channel edge to encourage drainage and 
ensure channels do not evolve in undesired locations. 

 

6. Any erosion resistant material, such as compacted sediments or concrete rubble, should be 
removed to 0.3 m (1 ft) below the bottom of the channel. 

 

7. Wherever possible excavation should be done in the dry—before reintroduction of tidal action. 
 
4.7 QUESTION 7: SHOULD THE PRE-EXISTING DRAINAGE SYSTEM BE MODIFIED? 
 
THE PROBLEM 
 
When tidal action is reintroduced to a subsided site, tidal flows will tend to concentrate in existing ditches 
or depressions that then fix the location and morphometry of the tidal drainage system. Once formed, tidal 
channels change very slowly and it is likely that once the pre-existing drainage system captures the tidal 
flows, its pattern is likely to persist for hundreds of years. As sedimentation occurs, mudflats build up and 
evolve into marshes in which the imprint of the pre-existing drainage system can persist and dominate the 
nature of the tidal channel system in the new marsh. Often the pre-existing drainage systems consist of 
straight field drains or borrow ditches on the backside of levees and, in some cases, newly formed tidal 
channels might be poorly located or could erode adjacent infrastructure. With suitable grading prior to 
reintroduction of tidal action, a different channel system template can be created. 
 
There appears to be a consensus that a dendritic sinuous tidal channel system provides a more complex 
habitat and supports a wider range of wetland functions than linear channels. For example, a sinuous 
channel will sustain both steep overhanging vegetation and shallow areas that allow cordgrass 
colonization within the channel system.  
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On some subsided diked former salt marshes, and particularly in salt ponds, the original dendritic sinuous 
tidal channel system is still expressed in the topography, even if the channels have been mainly filled over 
time or interrupted by interior levees. Concentrating tidal flows into the old channels to scour out the 
loosely deposited sediments and rejuvenate the entire tidal drainage system can restore these channels. 
This can be done by suitable selection of breach locations, removal of obstructions, and blocking of 
borrow ditch channels. 
 
The decision whether to modify the pre-existing drainage system is based on a trade off between the costs 
of grading to modify the system versus the potential benefits of, or adverse impacts avoided by, a 
modified system. 
 
RESTORATION EXPERIENCE 
 
Before it was breached in 1986, the Green Point Marsh was drained by a series of straight artificial field 
ditches and perimeter levee borrow ditches, and its topography modified by low road embankments 
(Figure 48a). By the time the site had fully vegetated, the artificial drainage system and effect of the road 
embankments had become permanently imprinted in the marsh plain (Figure 48b). 
 
In Napa Pond 2A, the original tidal marsh drainage system was largely undisturbed in the 
decommissioned salt pond. However, when tidal action was reintroduced by a single levee breach in 
1994, most of the tidal flow was conveyed in the deep levee borrow ditches around the site perimeter. In 
some locations, this has helped rejuvenate the old tidal channel system; in others, the borrow ditch has 
captured flows that could have been directed into old channels on the marsh plain. As a result of the 
modifications to the channel system, there are many “looped” channels that ultimately will separate due to 
siltation at drainage divides, forming new tidal watersheds (Figure 49). 
 
The Cooley Landing restoration was also a former salt pond where the imprint of the old marsh channel 
system remained. Typically, these old channels had silted in. The restoration design was intended to 
rejuvenate this original natural channel system. The design therefore sited the levee breaches opposite 
where the major slough channels had flowed to the Bay, and blocked the interior levee borrow ditch to 
force tidal flows into the old drainage system (Figure 50a). After three years, significant portions of the 
old tidal channels were rejuvenating by head-cutting into the deposited sediments (Figure 50b). 
 
At Carl’s Marsh, a shallow channel was excavated and material sidecast prior to breaching.  This channel, 
and small ridges left after the removal of the pre-existing field drainage system, have dominated the 
formation of the tidal drainage system.  These influences persist as the site continues to accrete—even 
though the original features are now buried under recently deposited sediment (Figure 35). 
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DESIGN RECOMMENDATIONS 
 

1. Existing site topography should be analyzed to identify how the tidal channel system is likely to 
evolve with no action. If the evolving channel system is likely to form in undesirable locations, 
the following measures can be taken to guide the location and layout of the tidal drainage system: 

 
• Pre-existing field ditches and drains can be filled and artificial obstructions to tidal flows 

removed. 
 

• Pilot channels can be graded in the desired location as was done at Carl’s Marsh. 
 

• The site can be graded or filled with dredged material to create low points where tidal flows 
will be concentrated. 

 
• Wave break peninsulas can also be used to define tidal watersheds and the location and size 

of evolving tidal channels. 
 

2. Where the remnant tidal channel remains intact, the site template can be graded to encourage tidal 
flows to reoccupy the original tidal system. This is done by choosing a suitable breach location, 
removing interior fill that might have divided the tidal system, and installing channel blocks in 
the interior borrow ditches. These interior borrow ditch blocks can be placed to completely isolate 
the borrow ditch as was done at Cooley Landing, or placed between levee breaches at the 
anticipated location of the drainage divide between two slough systems. 

 
4.8 QUESTION 8: SHOULD THE SITE BE GRADED TO ENCOURAGE PANNE FORMATION? 
 
THE PROBLEM 
 
Pannes and ponds were typical, but not ubiquitous, features of historic salt marshes that were important 
for bird use. In this report we distinguish between “pannes”, that are seasonally ephemeral playa-like 
features typically found at the poorly drained inland margin of the marsh or where tidal drainage is 
interrupted, and “ponds”, that tend to be well-defined, persistent, shallow, sometimes hypersaline features 
that persist on watershed divides within the marsh plain. It appears that marsh plain ponds can only 
evolve on fully mature marsh plains. At this time, we have not identified any feasible way to accelerate 
their evolution or design their analogs—except to allow unobstructed access to the marsh from the 
bayfront edge to allow wrack and debris to create depressions or disturbance to the tidal drainage system. 
This is done by lowering the bayfront levee (see Section 4.5 Question 5: Should the bayfront levee be 
lowered?). 
 
It is possible to grade the margins of restored sites to replicate the functioning of seasonal pannes. 
Allowing isolated shallow depressions to fill during the highest spring tides, which typically occur during 
the winter, can do this. This water then evaporates, creating a salt panne with high soil salinities in the 
summer that prevent vegetation colonization. The bare, shallow panne seasonally ponds water and 
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provides feeding opportunities for shorebirds. If these depressions are located in the path of a freshwater 
flow or groundwater seep, they will quickly become vegetated. 
 
The decision to deliberately create pannes in a tidal marsh design is influenced by the relative importance 
attributed to this kind of habitat compared to tidal marsh or transitional zone and the relative cost of 
grading. For filled sites it may be comparatively easy to grade depressions at appropriate elevations at the 
upper end of the tidal frame. Over the long-term, tidal pannes will gradually convert to vegetated marsh 
with anticipated sea level rise. Another factor in the decision to deliberately create poorly drained areas, 
such as pannes, is whether seasonal ponding of this type creates mosquito habitat. 
 
RESTORATION EXPERIENCE 
 
A portion of the dredged material disposal site adjacent to Muzzi Marsh (Figure 45) has inadvertently 
provided a good model of how sustainable panne habitat can be created and managed. Portions of the fill 
site have subsided into a depression connected to the Bay through culverts. The shallow depression 
collects rainwater, but receives tidal water a few times a year, sufficient to replenish the salts that prevent 
vegetation encroachment. This area has functioned as a seasonal panne for more than 20 years (PWA et 
al. 2002b). 
 
Elsewhere on dredged material disposal sites (e.g. River Park in Vallejo), pannes have initially formed in 
topographic depressions but ultimately, within a decade, rainwater washes out the salts, thus allowing 
vegetation to establish. 
 
At Wildcat Marsh in Richmond, sedimentation at the mouth of Wildcat Creek had obliterated a large area 
of ancient marsh plain and interrupted tidal drainage forming pannes (Figure 51). As mitigation for a 
flood control project, tidal channels were excavated in the alluvial sediment (PWA 1988). To preserve the 
functioning of two large pannes, low flashboard weirs were constructed to retain salt water on spring 
tides. However, within a few years the rejuvenated tidal drainage had bypassed the weirs, effectively 
draining the depressions and converting them to tidal marsh. 
 
At Sonoma Baylands, wave break peninsulas were used to guide the formation of a tidal drainage system 
emphasizing a series of long, narrow tidal watersheds. It was anticipated that the upper end of these 
watersheds would receive less sediment and become poorly drained, thereby encouraging the formation of 
tidal pannes (Figure 52). At this time, it is too early to determine if this approach is successful. 
 
DESIGN RECOMMENDATIONS 
 

1. To create pannes, shallow depressions can be graded at the marsh margin. The sill of these 
depressions should be broad enough to preclude erosion and at an elevation in the tidal frame that 
allows for inundation several times a year on spring tides. 

 
2. These pannes should be isolated from freshwater flows and seeps. 
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3. To retain water and salts, the panne soils should be comprised of low permeability Bay muds. 
 
4.9 QUESTION 9: HOW SHOULD THE WETLAND-UPLAND TRANSITION ZONES BE 

DESIGNED? 
 
THE PROBLEM 
 
In a tidal wetland, the high marsh lies between the typical marsh plain elevation of MHHW and the 
extreme high tides. The high marsh is subject to wide variability in soil salinity, wave action during storm 
surges, and disturbance from floating driftwood and debris (wrack) (Maser and Sedell 1994). As a result, 
the landward boundary of the high marsh shifts from year to year and is best described as a zone of 
transition, or a wetland-upland transition zone (Figure 2). The marsh plain is vegetated almost entirely by 
a small number of native halophytes, but a larger number of species—some native, some non-native, and 
all adapted to harsh conditions—grow at the upper landward portion of this zone. This area provides 
critical feeding, resting, and refugia habitat to a number of animals and plants. The transition zone can 
also serve as part of a buffer to protect the marsh plain from disturbance and predators. 
 
In a transgressive estuary like San Francisco Bay, the area of the wetland-upland transition zone was 
always small, but has been greatly decreased by the placement of fill for development, levees, and 
roadways along the marsh margin. Currently, the wetland-upland transition zone is very limited in extent 
and, if present, may consist of a band less than three meters (10 ft)- wide on a levee bank. These narrow 
zones provide inadequate high tide refuges for animals and insufficient room for plants to establish a 
sustainable community. 
 
The transition zone and adjacent uplands are particularly important as they serve as refugia during 
extreme high tides for animals such as the clapper rail, black rail, and the salt marsh harvest mouse. In the 
past, adjacent grasslands served as feeding grounds for animals such as the salt marsh harvest mouse and 
as habitat for the burrowing owl. With the loss of adjacent grasslands, the burrowing owl population has 
declined precipitously and retreated to small areas of wetland-upland transition zone. The subsequent loss 
of this transitional habitat has further reduced the number of burrowing owls. 
 
In addition to a wetland-upland transition zone, buffer areas that extend beyond the transition zone are 
important for various wetland functions, such as sediment filtration or retention, pollution retention, 
habitat and food web support, and flood protection. The character of a buffer is important to 
consider―whether it is mowed grassland or wild, open space with paths or dikes. Buffer widths are better 
determined by the buffer’s required functions rather than by a preset value. 
 
EXPERIENCE 
 
The opportunity to re-create a functional wetland-upland transition zone has not been realized in past 
restoration projects. In most sites, the surrounding levees were graded at maximum stable slopes to 
minimize costs, or sites were graded to maximize marsh plain area, resulting in steeply sloping banks and 
narrow transitional marshes. The wetland-upland transition zone that has been created was incidental to 
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the design. For example, at the Faber Tract, the transitional zone is wide as a result of allowing 
hydraulically placed dredged material to form gently sloping deposition cones to high elevations. 
 
At Muzzi Marsh, dikes surround the site and the highest tides reach approximately 0.3 m (1 ft) onto the 
dike edge. Native salt marsh species cannot tolerate the harsh conditions along the dike edge, which is 
commonly vegetated with non-native New Zealand spinach (Tetragonia tetragonioides), Australian 
saltbush (Atriplex semibaccata), wild radish (Raphanus spp.), and sweet fennel (Foeniculum vulgare). Of 
these four plants, only the Australian saltbush provides cover for the salt marsh harvest mouse.  
 
At Warm Springs Marsh, a graded bench was created at the toe of the levee for erosion protection and to 
accelerate colonization of wetland plants. However, while the bench was successful in erosion protection, 
it only extended to slightly above MHHW and did not provide adequate wetland-upland transitional 
habitat. 
 
At Crissy Field, because of sandy substrate and limited seed sources, extensive planting of native species 
was undertaken in the wetland-upland transition zone. Over several years, the species distribution has 
changed, but the cover remains abundant. 
 
DESIGN RECOMMENDATIONS 
 

1. To allow re-creation of wetland upland transition habitat, the perimeter levee of the restored 
marsh should be graded to create a gently shelving bench between current MHHW and future 
extreme high water (EHW) (allowing for sea level rise). Typically, this shelving bench will have 
a maximum slope of 1:10. 

 
2. The wetland-upland transition zone should have a minimum width of 30 m (100 ft) to provide 

quality habitat. 
 
3. Where possible, any adjacent protected upland habitat that provides wildlife values to tidal marsh 

species should be incorporated into the planning effort. 
 
4. Wherever possible (see Section 5, Question 5: Should the bayfront levee be lowered?), lower the 

bayfront levee to allow for unimpeded deposition of wrack and debris. 
 
4.10 QUESTION 10: SHOULD SOIL BE TREATED? 
 
THE PROBLEM 
 
Almost all the sediment entering San Francisco Bay comes from soil erosion. Clay and silt minerals and 
relatively small amounts of fine sand are carried in suspension from a huge watershed reaching into the 
Sierra Nevada (Krone 1979). These muds are largely a montmorillonite-type clay with high shrink/swell 
characteristics that exclude air and, together with a high organic content, create the anaerobic conditions 
suitable for marsh vegetation. Marsh soil accretion results from mineral sediment deposits combined with 
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the organic accumulations of roots and rhizomes. Long-term accretion variation is modified by marsh 
sediment compaction, the effects of sea-level variation, which can alter tidal regimes, and the density of 
vegetation that acts as a sediment trap (Pethick 1981). Josselyn estimates that marshes subside from their 
own weight about 0.06 m (0.2 ft) per century (Josselyn 1982). 
 
Salt marsh vegetation develops readily on the heavy clay and nutrient- and organic-rich mud found in San 
Francisco Bay. Most plant species have specific requirements for establishment, sustained growth, and 
reproduction. Little research has been carried out on plant-soil relationships in San Francisco Bay and 
these relationships are poorly understood. 
 
Soil texture is critical in determining rates of organic matter and nutrient accumulation. Unlike organic 
matter or nutrient concentrations, the texture of soil does not change over time unless more accumulates 
on the surface. This is an important consideration with the use of dredge material, which is often too 
coarse for good plant establishment. 
 
Soil acidity effects plant growth by altering the availability of soil nutrients or by increasing the solubility 
of metals to toxic levels. Soils with a pH below five are generally stressful to plants. Plants in the 
wetland-upland transition zone and on constructed peninsulas and dikes are subjected to stressful 
conditions of increased salinities and poor drainage. Here, plant growth may be stunted and seedling 
establishment restricted (Josselyn 1982). Plants on constructed islands, peninsulas, or dikes, where pH 
levels are below five, are mostly restricted to an assemblage of weedy species that usually out-compete 
native species.  
 
RESTORATION EXPERIENCE 
 
When dikes are breached in areas of former wetland, where salt marsh vegetation has either died out or 
become ruderal, there is a period where soils adjust to the reintroduced tidal regime. In time, soils again 
become anaerobic with neutral pH values restored and accumulated salts that inhibit seed germination are 
leached from the soil. Experiments correcting low pH values with lime suggest that this is not a practical 
solution. Rather, the establishment of correct elevations, and hence tidal regime, in the project design 
results in a longer-term solution (Josselyn and Bucholz 1984).  
 
Following tidal restoration of former marsh plain, exposed mud surfaces often form large 0.15 to 0.3 m (6 
to 12 in) diameter plates that in the first year or two become covered with assemblages of diatoms. The 
edges soften and, after another year or so, resume the appearance of a typical bay mudflat. In the first or 
second season of tidal access, pickleweed seeds become established in the cracks of the mud plates. The 
rate of plant establishment varies depending on soil and tidal conditions. Cordgrass establishes somewhat 
more slowly than pickleweed; however, it does establish by seed or by fragments of rhizomes and then 
spreads vegetatively. 
 
Both natural and restored marshes are sinks for suspended sediments. A study in North Carolina 
demonstrate that sedimentation rates are greater in younger restored or constructed marshes than in 
comparable natural or older restored marshes (Craft 2003). As cordgrass becomes established, increasing 
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stem density reduces the velocity of tidal waters and facilitates the deposition of suspended sediments 
(Knutson 1988). The deposition of both organic and inorganic matter is critical for adding soil nutrients 
and effects soil structure, bulk density, and porosity as well. Soil organic carbon (C) and nitrogen (N) 
pools were slow to develop in constructed marshes in North Carolina, so that, after 28 years, there was 
still significantly less soil organic C and N than in natural marshes (Craft 2003). This type of study has 
not been carried out in San Francisco Bay and might not apply, as the Bay muds of San Francisco are 
more nutrient rich than the sandier soils of North Carolina.  
 
Several investigators in other marsh systems have examined the relationship of soil factors of salinity, soil 
moisture, bulk density, nutrient requirements, and seasonal variations on plant establishment and growth 
(Phleger 1967; Mall 1969; Pearcy and Ustin 1984; Callaway and Sabraw 1994; Craft 1997; Craft et al. 
2002; Zedler and Callaway 2003; Acker et al. 2004). In work in Galveston, Texas, Lindau and Hossner 
(1981) found that fertilizer applications were not effective; however, naturally settling organic matter and 
clay particles increased nutrient levels to those of surrounding marshes within two to five years. However, 
in a pickleweed marsh in Mugu Lagoon in Ventura County, Boyer et al. found that phosphate, and 
particularly nitrogen enrichment, resulted in a greater biomass of pickleweed during the growing season, 
with pickleweed branching increasing by over 100 percent (Boyer et al. 2001). Studies outside of San 
Francisco Bay often involve sandier soils where organic matter and nutrient accumulation is slower and 
becomes a greater limiting factor for vegetation.  
 
Where daily and seasonal soil moisture conditions fluctuate, soils dry out and become aerated, such as on 
the high margins of marshes or on constructed islands or peninsulas. Soil acid levels can drop to well 
below pH 5. However, where full tidal inundation occurs, neutral pH values between 5 and 7 are 
maintained by the buffering effect of estuarine waters. In monitoring studies at Muzzi Marsh, pH values 
of marsh plain soils, taken over several years, ranged between 5.7 and 7.2. The exception was an area that 
remained above regular tidal inundation, where values dropped to 4.1. With restricted tidal regimes, 
where mud surfaces do not remain under tidal waters, the combination of heavy organic matter and 
aeration facilitates the reduction of iron and sulfur oxides to form iron and hydrogen sulfides, potentially 
toxic to plants. Under these conditions, vegetation establishment is inhibited, plant growth is stunted, and 
the decomposition of roots and buried plant material is slowed.  
 
DESIGN RECOMMENDATIONS 
 
1. Establish correct tidal elevations that assure full tidal inundation of the site and the development of 

channels throughout the marsh in order to buffer soil acidity. 
 
2. Following dike breaching, assume a period of time for soils to leach and become suitable for natural 

plant establishment. 
 
3. If the restoration site substrate is Bay mud, it can be assumed that these are sufficient nutrients to 

support plant growth; therefore, there is little need for nutrient supplements. Future experimental 
work may provide new information that supports soil enhancement programs, particularly in the 
transition zone. 
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4. If the site substrate consists of coarse sandy material or imported upland fill, nutrients may be limited 

and soil studies should be undertaken to determine whether supplements should be added. 
 
4.11 QUESTION 11: SHOULD PLANTS BE PLANTED? 
 
THE PROBLEM 
 
The plant community is central to the biological functions of a wetland ecosystem: its establishment as a 
self-sustaining community is a critical goal in wetland restoration. In San Francisco Bay, there is usually 
an abundant seed source of the most common native salt marsh plants. Seeds and plant fragments are 
carried to a site by tidal waters and establish where soil and tidal conditions are appropriate. Therefore, 
planting of common native marsh plain plants may not be necessary. 
 
Historic marshes in San Francisco Bay had greater species diversity than today; diversity has been 
reduced due to an overall loss of area and fragmentation of wetlands and the extensive diking of the 
landward margin of marshes. This raises the question whether or not planting is required for rare or 
endangered species. To date, there has been no systematic attempt in restoration projects to undertake 
planting for these species. 
 
Historic connections between marshes and their watersheds are almost all gone, thus depriving marshes of 
winter freshwater runoff and sediments from the watershed. These sediments were a source of diverse 
substrate particle sizes, ranging from course sand to fine silts, which appear to be important for some 
plant species, such as the Point Reyes bird’s-beak. To date, there have not been experimental efforts to 
plant less common species or species requiring special conditions, such as unusual soil types or reduced 
competition from more common species. California sea-blite may have once occurred in the Petaluma 
Marsh. A population of bush seepweed (Suaeda moquinii), more commonly found in the desert, grows in 
panne-like conditions in the wetland-upland transition zone at the Fremont airport property. There is little 
experience in San Francisco Bay for developing preconditions for plants, such as selecting imported 
substrates that will favor certain plants, or timing of breaches to favor species, or weeding of the wetland-
upland transition zone to favor healthy establishment of native species. 
Several non-native species of cordgrass have been introduced to the Bay because of experimental 
plantings. Dense-flowered cordgrass (Spartina densiflora), introduced from Humboldt Bay, has 
established and spread along Corte Madera Creek in Marin County. Saltmeadow cordgrass (Spartina 
patens) was introduced from East Coast salt marshes, established and spread slowly in the Benicia 
marshes. Seeds of smooth cordgrass, collected from East Coast salt marshes and planted in Pond 3 
adjacent to Alameda Creek, established and spread rapidly. It readily hybridizes with the Pacific 
cordgrass. Pollen from smooth cordgrass is carried by wind and many hybrid forms have developed. 
Preemptive planting of Pacific cordgrass may be a method for controlling the smooth cordgrass invasion 
but has not been undertaken or proven at this stage. 
 
Once the tidal saline influence diminishes in the upland transitional zone, non-native plants that are 
adapted for disturbed conditions tend to flourish and out-compete native species. Pepper grass and 
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Russian thistle (Salsola soda) are two relatively recent aggressive arrivals in this portion of a Bay 
wetland. Little work has been done to control these species. In brackish areas, pepper grass establishes in 
the middle zone where there are disturbances. At low elevations, it is easily out-competed by native 
species such as cattails or bulrush. Strategies for either controlling the spread of exotic species or limiting 
the possibility for establishment may be developed in the future. 
 
At brackish sites that are not deeply subsided, it may be possible to establish stands of brackish 
vegetation, such as bulrush and cattails, prior to breaching. With the reintroduction of a tidal regime, 
stands may keep up with accreting sediments or at least readjust to the new tidal conditions. In this way, 
native vegetation could be established prior to breaching to preclude colonization by invasive species and 
increase the stability of the substrate; however, there is no documented experience of this in San 
Francisco Bay. 
 
EXPERIENCE 
 
Until the early 1970s, it was thought that once a tidal salt marsh was destroyed, it was gone forever. This 
notion was reversed for San Francisco Bay marshes when native salt marsh plants established naturally in 
the Faber Tract in South Bay following a dike opening in the early 1970s. The Muzzi Marsh restoration 
was the first restoration project that relied on the natural establishment of salt marsh plants. Pickleweed 
first established at higher elevations of the “inner” marsh plain within a year after the dikes were breached 
and in the next ten years had spread across most of the “inner” marsh. Cordgrass established in several 
places in the “outer” marsh within three or four years after the restoration of tidal action, with a 
substantial cover developed after ten or 15 years. Gumplant arrived along the dike transition area 15 years 
after dike breaching and now, 28 years later, it grows commonly along dike and channel edges within the 
marsh where in summer and fall, the yellow flowers line the bank tops. Neither arrowgrass (Triglochin 
spp.) nor Point Reyes bird’s-beak, both established on the adjacent fragment of ancient marsh at the Corte 
Madera Ecological Reserve, have established at Muzzi Marsh, perhaps because of special but unavailable 
soil requirements or establishment conditions. Pickleweed is replacing cordgrass in the “outer” marsh. As 
the marsh plain elevation increases, large patches (nine meters (30 ft) or greater) of saltgrass, jaumea, and 
alkali-heath have established across the marsh plain.  
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Table 3. Time Sequence for Species Establishment in Muzzi Marsh (unpublished data) 

 Years after dike breaching 
 1-3 4-6 7-10 11-14 
Perennial pickleweed  
(Salicornia virginica) x    
Annual pickleweed  
(Salicornia europaea) x    
Pacific cordgrass (Spartina foliosa) x    
Salt grass (Distichlis spicata)  x   
Grass buttons (Cotula coronipifolia)  x   
Sand spurrey (Spergularaia macrotheca)  x   
Jaumea (Jaumea carnosa)   x  
Alkali heath (Frankenia salina)   x  
Fat-hen (Atriplex triangularis)   x  
Gumplant (Grindelia stricta)    x 

 
At Warm Springs Marsh, saline water―where typical salt marsh species established within the first few 
years― was replaced by brackish water. Salt marsh species were replaced by dense stands of brackish 
species, bulrushes, and cattails. Pickleweed is insignificant along with saltgrass, jaumea, alkali-heath, and 
fat-hen that grow throughout the restoration site, mostly in the higher, mid, and landward portions of the 
marsh where bulrush is not as dense. Dense stands of gumplant and sea lavender both grow in a higher 
portion of the site. Seaside arrowgrass (Triglochin maritima) was first recorded in 1999, 13 years after the 
dikes were breached, and has spread to other locations on the site. The annual, small spikerush 
extensively colonized the mudflat beyond the vegetation in the mid 1990s, mostly disappeared by 2000, 
and large patches had returned by 2004. Salt marsh fleabane (Pluchea odorata) has persisted in one 
location for four years. These native species have all arrived in tidal waters. The invasive pepper grass 
grows in several places around the site and in some cases into sparse stands of bulrush; however, its 
population waxes and wanes—apparently with seasonal variations—and does not appear to exclude other 
higher marsh native species such as gumplant or sea lavender. In other places in the South Bay and in 
Suisun Marsh, pepper grass provides 100 percent cover, thus eliminating any species diversity or suitable 
habitat for native species. 
 
There is limited experience with planting plants in San Francisco Bay. Tom Harvey planted many 
cordgrass clumps before the dikes were breached at the Faber Tract, demonstrating that cordgrass could 
be successfully transplanted (Faber 2004 personal communication). A dozen or so cordgrass plants were 
planted at the “Inner” Muzzi in 1976 and survived but did not expand vegetatively. By 1980, extensive 
natural colonization of Muzzi Marsh had begun. Curtis Newcombe and Herbert Mason demonstrated that 
Pacific cordgrass could be successfully transplanted using small plugs or sprigs (five or six culms) or 
larger clumps (15-30 culms) (Newcombe et al. 1979). This work was of interest for its potential both to 
speed up restoration projects with large-scale plantings and to stabilize eroding shorelines and dredge 
spoils. In a study by the USACE at Alameda Creek Pond 3, Paul Knutsen successfully replicated work 
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from the East coast to demonstrate large-scale plantings with seed—but he unfortunately imported 
smooth cordgrass from Georgia for this work. This species is now considered an aggressive, invasive 
exotic plant in San Francisco Bay.  
 
Early, small-scale experiments in San Francisco Bay to plant different species of salt marsh plants were 
frequently unsuccessful because these plantings did not survive and only added to project costs (P. Faber 
and J. Swanson, personal observations, 1979; Race and Christie 1982). Many questions regarding 
planting requirements, soil nutrients, differential seed accumulation, and germination requirements have 
been addressed in the extensive restoration work in the salt marshes of San Diego County (Zedler and 
Callaway 2003), in experimental fresh water marshes (Vivian-Smith 1997) and work on the East coast 
using plants to stabilize eroding shorelines (Garbisch et al. 1975; Knutson et al. 1990). Based on a 
hypothesis that biomass and nitrogen would increase with greater species richness and thus accelerate the 
evolution of ecosystem function, Callaway, Sullivan, and Zedler examined these parameters for eight 
native species of common marsh plants. In a three-year study, they found that manipulating the diversity 
of plantings offers a possible tool for increasing the rate of functional development; however, the long-
term advantage of this approach has yet to be demonstrated (Callaway et al. 2003). Josselyn reports 
success in planting native species in the transition zone to reduce or limit non-native invasions where 
gypsum and organic matter were used as soil amendments (Josselyn, personal communication, November 
2004). 
 
From observing the spread of the introduced species, we know that seeds of cordgrass travel considerable 
distances. Seeds of Dense-flowered cordgrass traveled from Corte Madera Creek in Marin County across 
the Bay to Point Pinole. Seeds of smooth cordgrass, experimentally planted in Alameda Creek Pond 3, 
south of Hayward in the mid-1970s, and later in Alameda, where they established readily and grow 
vigorously. Smooth cordgrass outcompetes the native Pacific cordgrass because of its vigorous growth 
and size but also readily hybridizes with the native cordgrass due to its abundant production of pollen. 
Different forms of hybrids grow at both lower and higher elevations on the marsh plain than the native 
species, which reduces habitat for native salt marsh plants at higher elevations and for shorebirds at lower 
elevations. Hybrid forms have spread by several thousand percent in the past several years. If the rapid 
population expansion of hybrids is allowed to continue, it could endanger the presently abundant Pacific 
cordgrass by aggressive hybridization. Hybrids that establish at low elevations, replace active feeding 
grounds for shorebirds and accrete sediment rapidly. High stem density and dense root mats develop, 
which inhibit channel formation. In the Cogswell Marsh, cordgrass hybrids resulted in truncated channel 
formation.  
 
Smooth cordgrass grows at five times the growth rate of the native species and has 20 percent better 
seedling recruitment (P. Baye, personal communication, 2004). To date (2004), San Pablo Bay has not 
been extensively invaded by smooth cordgrass; however, it grows in Tiburon marshes and in 2004, two 
large clumps were discovered at Muzzi Marsh in Corte Madera. The Central Bay is the most heavily 
invaded on both sides of the Bay. The California State Coastal Conservancy has established a San 
Francisco Estuary Invasive Spartina Project (CSCC and USFWS 2003), which is planning to extirpate all 
exotic cordgrass species. Unless this program is successful, the long-term outlook for the San Francisco 
Bay salt marsh flora may be quite different, with little native cordgrass and altered plant distributions in 
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low, middle and high marsh zones. Work in the field to eliminate the non-native species of cordgrass is 
presently getting underway.  
 
Marsh plants have been extensively used as wind breaks to stabilize substrate on the East Coast, but have 
been only experimentally tested in San Francisco Bay. Curtis Newcombe and Herbert Mason found that 
the Pacific cordgrass would not successfully stabilize high energy scarps— however it could be used with 
limited success to stabilize 6 to 15 m (20 to 50 ft)-wide benches when planted with sprigs rather than with 
seed (Newcombe et al. 1979). As an alternative, the use of plant rolls, which are effective in erosion 
control for stream banks, may provide a new tool to augment or replace peninsulas for damping wave 
energy.  
 
At Green Point Marsh, an extensive stand of brackish vegetation was established prior to accidental 
breaching in 1986. However, because the elevations of this managed wetland were too low, the vegetation 
died. The ensuing mudflat was later recolonized by bulrush when it had achieved appropriate elevations.  
 
DESIGN RECOMMENDATIONS 
 
1. Allow plant establishment to proceed from local native seed sources carried by tidal waters from 

nearby marshes, and allow time for a full range of common species to establish. Sites that are 
isolated, geographically or otherwise, may need planting. However, natural plant establishment may 
be more advantageous biologically and economically. 

 
2. Species diversity should be a goal for restoration. 
 
3. Opportunities to increase diversity of native species or reduce invasions of exotic species may occur 

in the wetland transition zone by selective planting. Substrate conditions and seed sources need to be 
fully considered. 

 
4. Because of concern about the rapid spread of the invasive smooth cordgrass and its hybrids, different 

strategies are appropriate for restoration projects in different parts of the Bay and in accordance with 
recommendations from the Invasive Spartina Project (CSCC and USFWS 2003). Existing invasive 
vegetation should be removed from a restoration site prior to dike breaching. 

 
5. Monitor and remove non-native cordgrass species that appear in any newly restored marshes. 
 
4.12 QUESTION 12: HOW DO WE PROVIDE HABITAT FEATURES FOR TARGET SPECIES? 
 
The overriding goal of restoring wetlands is to enhance the Bay ecosystem, which encompasses a 
complex assemblage of physical conditions, habitats, and plant and animal species. Each site is a unique 
but contributing part of the whole system. Useful information on many endangered species is presented in 
the Goals Project (2000). Profiles for four species are presented in this document to give a brief idea of 
aspects to be considered in creating a marsh design to enhance endangered species habitat; however, 
others could be selected, such as shorebird species or harbor seals. 
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It is a challenge to balance goals to provide habitat in the near-term for endangered species with goals for 
the long-term evolution of a healthy ecosystem. As is often the case with endangered species, much is 
known about individual species, but more knowledge is needed to understand how to best protect them. 
 
THE PROBLEM  

 
Because of the major loss of tidal salt marsh over the past 150 years, plant and animal species that are 
significantly dependent on these marshes have nearly disappeared. A number of animal species have been 
designated as endangered by the USFWS and the CDFG, including the clapper rail, the salt marsh harvest  
mouse, and the salt marsh song sparrow. As species at or near the top of the food web, these organisms 
provide an indication of the health of the tidal marsh ecosystem. In designing restoration sites, they are 
used as target species in developing habitat goals. An objective is to provide sustainable habitat that 
supports these target species. The evolution of the physical conditions at the site will be mirrored by the 
evolution of vegetation composition. The habitat value for animal species will evolve accordingly: high 
quality low marsh with continuous expanses of cordgrass and good networks of channels favors clapper 
rail and extensive stands of pickleweed with good channels and high tide refugia favor salt marsh harvest 
mice. Each stage in the restoration of a vegetated marsh tends to favor different target species. Rare plant 
species may also require special soil conditions for establishment. A sizeable, well-buffered transitional 
marsh with a mix of habitat types best meets the goals for most target species. Many species descriptions 
for both common and rare species are provided in the Goals Report (2000). However, four species are 
widely considered as target species in protection and restoration work around San Francisco Bay and are 
discussed here. 
 
CALIFORNIA CLAPPER RAIL 
 
Of critical concern for the long-term survival of the California clapper rail is the fragmented state of the 
tidal salt marshes around San Francisco Bay. Small isolated fragments of marsh lead to inbreeding in rails 
with consequent loss of genetic diversity. Isolated fragments also prevent escape from predators. Quality 
habitat for self-sustaining populations of rails includes large parcels of tidal marsh at least 100 hectares 
(250 acres) in size and a network of first order channels. Because rails are cautious, they do not go far into 
a marsh. Resources are more abundant in “high quality” habitat, thus rails don’t need as much area to 
fulfill their life-cycles and population densities can increase. Rails call to each other to make contact, to 
advertise their breeding status, and to defend their territories. Stable populations fare best with large 
contiguous marshes, healthy stands of marsh vegetation, and a well-developed network of tidal channels 
at the bay edge. Deep channels generally support dense vegetative cover nearby and a complex of smaller 
channels with corridors to refugia for periods of extreme high tides. Other important features include 
protection from predators that includes refugia during extreme high tides, and well-buffered marshes 
isolated from predators emanating from neighboring developed upland areas. Low quality narrow 
marshes give better access to fox and other terrestrial predators. Such marshes are not used as nesting 
areas. Successful control of the red fox and feral cats is essential in the near future for the long-term 
survival of the California clapper rail. 
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In the North Bay, there are populations of clapper rail in Muzzi Marsh, Bahia Marsh, and along the 
Petaluma River. These populations are thought to be stable because of a number of factors. A fringing 
border of cordgrass marsh that grows along the Corte Madera waterfront to the Tiburon waterfront 
enables clapper rails to move between marshes to establish new territories in otherwise non-contiguous 
marshes. Surrounding roadways and houses appear to limit red fox access but increase cat and raccoon 
access. Other urban tidal marshes with stable populations of clapper rail include the San Bruno and 
Arrowhead marshes. Low numbers in Sonoma Baylands reflects a regional decline in clapper rail, though 
there is a population at Carl’s Marsh and the nearby silted in marina (J. Evens, personal communication, 
July 2004). 
 
DESIGN RECOMMENDATIONS 
 
1. Provide large contiguous areas of tidal marsh with corridors of cordgrass along the bayfront. 
 
2. Restore a complex sinuous tidal drainage system with deep and sinuous channels that foster vigorous 

cordgrass establishment. 
 
3. Wherever possible, isolate the marsh plain from predators such as red fox and domestic and feral cats. 
 
SALT MARSH HARVEST MOUSE 
 
Salt marsh harvest mice are dependent on the thick perennial vegetative cover of salt marshes and only 
leave the marshes in late spring and summer if the marsh connects with grasslands, and then only when 
the plants are green and provide good cover. These mice live primarily in the middle of the pickleweed 
and upper (or “peripheral halophyte” zone as it is called by Shellhammer 1982; Shellhammer 2000 ) or 
high marsh zones of marshes; they need the latter zone to escape from high tides. They are cover-
dependent animals that swim well but are exposed to aerial predators when they are forced out of 
vegetation to swim or to cross bare ground. Their usual method of escape from both tides and predators is 
to seek the dense cover of the less-flooded upper tide zone of marshes or the bushes along channels within 
marshes. The upper zone of marshes, the high marsh, was once much more abundant in San Francisco 
Bay, but is now present in most tidal marshes as 1-2 m (3-6 ft)-worth of mixed halophytes distributed 
along the steep sides of outboard dikes. The loss of this essential escape cover has resulted in marshes 
with sizable pickleweed (i.e. middle) zones that lack populations of this endangered mouse. Upper marsh 
zones have become highly fragmented, thus making it difficult for populations to persist and movements 
to occur between marshes. Isolation and reduction in size of habitat usually results in extinction.  
 
There are few areas around the Bay today where grasslands adjoin tidal marshes. Most marshes end in 
abrupt dikes, salt ponds, and filled areas that are either barren or developed. There are few places where 
cats and red foxes do not have relatively easy access to the marshes. The higher, and especially the 
highest tides, attract raptors that feed on mice of all species that have been forced to move upland by the 
tides. Our ability to plan for protection of the salt marsh harvest mouse is impeded by a lack of 
knowledge.  Areas needing better answers include the population genetics of the mouse. How much 
genetic variation does a population have and what parameters of marshes, such as size, complexity, 
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escape cover, etc., are necessary to prevent the loss of genetic variability over time? How much or what 
kinds of predator control measures are necessary? What is the impact of pepper grass, which is becoming 
dense and extensive throughout many parts of the mouse’s range? Nothing is known about the level of 
toxics and the health of mouse populations. 
 
Most of the marshes of the South San Francisco Bay have undergone some to considerable amounts of 
subsidence during the last 50 years and many have become much less saline. Much of the southern part of 
South San Francisco Bay has shifted from cordgrass-pickleweed marshes to brackish species marshes 
filled with bulrush and cattails. Shellhammer (personal communication, 2004) concluded that the salt 
marsh harvest mouse southern subspecies prefer saline hydrophytes such as pickleweed. Recent studies in 
Suisun Bay indicate that mice belonging to the northern subspecies prefer brackish marsh plant species. 
 
DESIGN RECOMMENDATIONS 
 
1. Provide large contiguous areas of pickleweed marsh connected by migration corridors. 
 
2. Provide adequate areas of high tide refugia with abundant cover. 
 
3. Wherever possible, isolate the marsh plain from predators such as red fox, raccoons and domestic and 

feral cats. 
 
SONG SPARROW 
 
There are three distinct subspecies of song sparrow that are year-round residents of tidal wetlands of the 
San Francisco Bay Area or closely adjacent lands: Melospiza melodia samuelis of San Pablo Bay and 
northern San Francisco Bay (south to Sausalito and north Richmond); M.m. pusillula of the balance of 
San Francisco Bay shores; and M.m. maxillaris of the Suisun Bay marsh complex and west to South 
Hampton Bay. These are three narrow endemics with distinct morphological and behavioral differences, 
the latter primarily observed for nest timing differences. These marsh songbirds stake out small territories 
in the pickleweed zone, as many as 25 per hectare (ten per acre) in a “good” marsh. Song sparrows tend to 
stake out their territories close to where they were hatched. They are found above the cordgrass in the 
pickleweed zone and along tidal sloughs where gumplant grows. They use this plant effectively as song 
perches and for nesting sites. Preferred feeding sites within the marsh include the muddy edges of small 
channels where they forage in the intertidal mud for small mollusks and other marine invertebrates as well 
as the seeds of gumplant and pickleweed. Nesting losses result from extreme high tides, parental 
desertion, and from predators, such as the Norway rat, garter snake, and especially the red fox.  
 
The three subspecies of song sparrow all require productive tidal salt marshes where there is sufficient 
vegetation to provide suitable nest sites, food, and cover. Ideal habitat for M.m. pusillula and M.m. 
samuelis appears to be large expanses of fully tidal salt marsh with numerous small channels. Ideal 
habitat for M.m. maxillaris is large expanses of fully tidal brackish marshes where bulrush grow along 
with pickleweed and gumplant (Goals Project 1999). Continuity of habitat appears to be of great 
importance though no studies of size of marsh required are reported. Temporary aggregations at the upper 
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fringes of marshes have been noted during high tide periods. However, birds return to their territories 
when the tide recedes. The use of various types of diked wetlands is poorly understood and needs further 
study; however, the only mud available for nest building by May is in adjacent tidal or diked-off marshes. 
Ecological studies of the use of diked marshes by the different subspecies is needed to reveal if nesting 
can be successful or if the birds simply use the dikes as dispersal corridors. Continuous marsh/mud 
interfaces are essential for dispersal in the late summer. 

 
DESIGN RECOMMENDATIONS 
 
1. Design to achieve extensive stands of dense marsh plain vegetation. 
 
2. Wherever possible, isolate the marsh plain from predators such as red fox, raccoons and domestic and 

feral cats. 
 
SOFT BIRD'S-BEAK (CORDYLANTHUS MOLLIS SSP. MOLLIS) 
 
Soft bird’s-beak is an annual semi-parasitic herb in the figwort family and is considered “rare” by the 
State of California and “endangered” by the Federal government. It is known from fewer than 20 
populations and is found in the upper and mid zones of tidal brackish salt marshes around the Napa River, 
Carquinez Straits, and the Suisun marshes. It is presumed extirpated from the Petaluma River marshes. 
These populations are found in the upper and mid zones of marshes. Point Reyes bird’s-beak, another 
semi-parasitic annual, is also considered rare and endangered throughout its range of coastal tidal salt 
marshes. It is found in several marshes from Sausalito to Las Gallinas in Marin County but has been 
extirpated from marshes in San Mateo and Santa Clara counties. The elimination of tidal and brackish salt 
marshes has drastically reduced available habitat for both species but populations are now further reduced 
by development, foot traffic, non-native plants, altered hydrology, and cattle grazing. 
 
Both species of bird’s-beak are annuals with germination and establishment of seedlings dependent of 
adequate annual rainfall, both in quantity and timing. In Marin County where marshes have been 
protected and disturbances reduced, Point Reyes bird’s-beak populations have increased and in some 
years, the number of plants is quite abundant in the few areas where it grows. It has not been found 
growing in any restoration sites yet, but some of these sites appear to have the right conditions for bird’s-
beak establishment and there are nearby populations in older marshes as sources of seed. Both species of 
bird’s-beak appear to grow best in relatively course, sandy, silty or even gravel-silt, often in upper marsh 
areas on poorly drained flats, depressions, or areas with sparse or little emergent vegetation. For a portion 
of its life cycle, both bird’s-beak species are parasitic on common species such as pickleweed; however, it 
apparently does these species little harm. This genus is considered to be a variable complex and is in an 
active state of speciation in California with species varying taxonomically and as a result habitat races are 
limited in distribution. For this reason the extirpation of a subspecies with very limited distribution such 
as the soft bird’s-beak is a greater loss for the longevity of the entire genus. Natural establishment in 
restored marshes has not been observed to date. Studies to better understand population genetics and 
habitat requirements, including special soil conditions, would improve conservation and management 
strategies. 
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DESIGN RECOMMENDATIONS 
 
1. Broad wetland-upland transition zones need to be established with maximum plant species diversity. 
 
4.13 QUESTION 13: HOW SHOULD PUBLIC ACCESS BE PROVIDED? 
 
THE PROBLEM 
 
Public access is often an important component of restoration projects and the San Francisco Bay 
Conservation and Development Commission (BCDC), the USFWS, and the CDFG all encourage 
recreational opportunities for the public. Good public access encourages better protection of natural 
resources by an interested public; however, public access can have adverse impacts on wildlife. Adverse 
effects on wildlife may be direct, such as harassment or killing, or may be indirect and result in 
modification of habitat usage, such as with nest or site abandonment. Long-term effects may be reduced 
reproductive success and reduced populations within species or species distributions. Some wildlife 
species do adapt to the presence of humans although this may leave them more vulnerable. Balancing 
public access and natural resource protection is a complex aspect of public policy and choices are often 
difficult (BCDC 2001a, b). 
 
Design decisions on the location of pathways can have a significant influence on other restoration 
objectives. For example, paths are often located on existing levees and the levee’s preservation may 
conflict with the opportunity to restore full connection to the estuary. The abutments of bridges may 
constrict tidal flows. 
 
Negative impacts can include impacts on populations of endangered species, impacts on breeding and 
foraging areas, or fragmentation of wildlife corridors. Migratory birds do not attain the energy reserves 
essential to a successful migration if foraging is disturbed. Human access also provides access to 
predators such as cats, dogs, raccoons, and foxes that use the same trails. On the other hand, public access 
that is well designed can provide considerable protection for wildlife since human presence can 
discourage vandalism and illegal hunting. Many birds do become acclimated to trail users even during 
migratory stopovers. Intrusions into the marsh plain should not be allowed except for specific purposes 
such as research or occasional teaching needs. In those cases, care must be taken not to create worn 
pathways that alter tidal flows across the marsh plain. Where extensive use is panned, a boardwalk over 
the marsh reduces damage to the marsh and provides easier access for teaching purposes. 
 
RESTORATION EXPERIENCE 

At the Warm Springs, a public trail was constructed along the new inboard levee. The design of this trail 
was not integrated with the wetland design and included exotic plantings and a viewing platform that was 
quickly engulfed in vegetation (Figure 53). Nevertheless, the trail supports high recreational use and 
appears to create minimal impact on the high bird use of adjacent mudflats. 
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At Muzzi Marsh, high public use of the perimeter pathways on dikes appears to have reduced 
disturbances by illegal hunters and hunting dogs. In 1980, as part of an adaptive management project, 
channels were excavated to limit intrusion onto the marsh plain by bicycles, motorcycles, cats and dogs. 
As designed, these channels have been effective barriers—however, they have also brought channel 
habitat close to disturbance from human activities on the dikes. 
 
Because of its urban location, the Crissy Field project probably receives the highest public use of any 
restoration project in the Bay Area. Here, public access was fully integrated into the design and appears to 
be successful in limiting human and pet intrusion in a small site in an urban setting. A boardwalk and 
bridge allows access into the site and perimeter paths are separated from the wetland by both low fences 
and extensive native plantings in a buffer zone (Figure 54). The promenade across the entrance channel 
was bridged by a 20 m (70 ft) clear span to allow unimpeded migration of the tidal channel beneath. 
 

DESIGN RECOMMENDATIONS 
 
1. Avoid public access to sensitive areas for plants or wildlife in marshes where access is required. 
 
2. Where any human activity is anticipated, provide buffer zones around the perimeter of the site. 
 
3. Where access across a salt marsh is required, a boardwalk is advisable to reduce physical alteration of 

the marsh plain from foot traffic. Use of boardwalks should be kept to a minimum as their presence 
alters the vegetation below. 

 
4. Where paths cross tidal channels, use clear span bridges that are adequately sized for the anticipated 

tidal prism within the site (see Section 4.3 Question 3: Should a levee breach and outboard channel be 
excavated?). 

 
5. Provide educational interpretive signs that enhance the experience and support respectful visits.  
 

4.14 QUESTION 14: HOW SHOULD WE INTEGRATE FLOOD MANAGEMENT ISSUES? 
 
THE PROBLEM 
 
The potential impact on flooding and draining of adjacent property, and the opportunity to reduce flood 
hazards, has to be considered in all restoration projects. Two types of flooding have to be considered: 
coastal flooding due to levee erosion and overtopping from storm surges and high waves, and flooding 
from the watershed due to rainstorms. 
 
Most restoration sites require breaching a levee that formerly was the primary defense against coastal 
flooding. Therefore, it is essential that a new inboard levee be constructed that provides equal or better 
protection than the original levee. Moving the primary flood defense levee inland can modify the drainage 
system on adjacent low-lying land. This drainage system may rely on passive discharge of runoff that is 
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stored in ditches and retention areas through tidal flap gates. If the storage volume is reduced by levee 
setbacks, improvements will need to be made to compensate for the potential increase in ponded water 
level. In addition, the restoration may temporarily change the tidal range outboard of flap gates by 
reducing or preventing discharge on the ebb tide. 
 
In many instances, tidal wetland restoration projects can help reduce flood hazards. Many existing 
bayfront levees are former agricultural levees that are now in poor condition. Rebuilding a new levee 
inland provides an opportunity to improve the degree of protection for adjacent areas. Re-establishing a 
new vegetated marsh outboard of a relocated levee can significantly reduce the risk of erosion damage 
and the need for costly riprap erosion protection. 
 
In many instances, restoration sites are located adjacent to where creeks discharge to the Bay. Whereas 
these creeks formerly discharged into natural slough channels that meandered through marshes before 
connecting to the Bay, their flows are now usually confined within a leveed tidal channel. Many of these 
tidal flood channels accumulate estuarine and alluvial sediments, requiring frequent expensive 
maintenance dredging to retain their design flood conveyance capacity. Restoring tidal action to restored 
marshes can significantly increase natural scouring and reduce the need for maintenance. On the other 
hand, increased tidal scouring might also widen the channel and undermine existing levees downstream. 
In addition, removal, lowering, or setting back levees along these tidal flood channels can also increase 
flood conveyance and reduce flood hazards upstream. 
 
RESTORATION EXPERIENCE 
 
At Muzzi Marsh, a new inboard levee was constructed prior to breaching the old bayfront levee. The 
extensive vegetated marsh plain helps protect the new levee from erosion. Over the last 25 years, the 
original levee has eroded (Figure 45). If the restoration project had not taken place, this levee, or a new 
inboard levee, would have had to be reinforced with riprap. 
 
At Warm Springs, the reintroduction of tidal action from the project into Coyote Slough caused rapid 
scouring and has doubled its cross-sectional area and significantly increased its flood conveyance 
capacity (Figure 27 and Figure 28). However, this benefit was incidental and not incorporated into the 
planning of the project. Restoring tidal action to this site reduced the passive flood storage area for the 
adjacent property. To compensate for the lost volume, a flood basin was excavated inboard of the new 
levee (Figure 22) and new tide gates installed. Unfortunately, these tide gates discharged into an artificial 
embayment instead of directly into a tidal channel. This resulted in the need for frequent maintenance 
dredging to keep the tide gates clear. 
 
At the Warm Springs site, a graded intertidal bench, 30 m (100 ft)-wide, protected the inboard levee. In 
the first few years, up to nine meters (30 ft) of this bench eroded due to wave action until a vegetation 
fringe was firmly established; since then, erosion has been negligible (PWA and LSA Associates 1998). 
 
At Tolay Creek, reintroduction of tidal action at the end of a long, constricted channel changed the tidal 
characteristics, increasing mean tide and low tide elevations. This meant that drainage from adjacent 
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properties was impeded, causing waterlogging and ponding. High standing water levels and strong wind 
wave action has caused erosion of the adjacent roadway, Highway 37 (Figure 55). 
 
As part of the Napa Flood Management Project, a 160-hectare (400–acre) tidal wetland was restored at 
the mouth of the Napa River. Part of this design included lowering the levees to allow flood flows to 
dissipate across the wetland, thereby reducing flood elevations upstream in the City of Napa. 
 
DESIGN RECOMMENDATIONS 
 

1. The potential impact of tidal restoration on flood hazards and drainage of adjacent land needs to 
be analyzed and integrated in the design plan. 

 
2. Opportunities for reducing flood hazards and drainage should be considered and incorporated into 

the plan wherever possible. 
 

3. Wherever possible, the design should reduce erosion hazards to flood control levees by 
establishing vegetated marsh to reduce wave energy. 

 
4. Restoration of tidal action can also be designed to increase scouring of flood control channels to 

increase their flow capacity during flood events. 
 

5. Lowering of levees along flood control channels can reduce flood elevations upstream by 
increasing channel conveyance and storage. 
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5. GENERAL RECOMMENDATIONS AND CONCLUSIONS 
 
5.1 CONCLUSIONS 
 

• In general, restoration projects around San Francisco Bay have evolved in geomorphically 
explicable ways. The ecologic response to the physical evolution of the wetland has been less 
predictable. 

 
• Many early restoration projects had unrealistic expectations of the rate at which a fully vegetated 

marsh would form. We should expect restoring wetland sites to take at least several decades to 
evolve towards a mature state in balance with sea level rise and sedimentation. 

 
• Restoration projects (and unplanned restorations) that took advantage of natural sedimentary 

processes to form an accretionary marsh that evolved over time have performed as well or better 
than highly engineered projects that attempted to replicate the form of a mature marsh. 

 
•  The design of many early restoration projects was focused on the achievement of vegetated 

marsh functions as rapidly as possible and, in doing so, discounted the value of interim habitats 
and the value of a mosaic of evolving habitats. 

 
• Monitoring periods of five to ten years, commonly required as permit conditions, may provide 

valuable information on whether the site is evolving as anticipated. However, this period is 
generally not long enough to inform improvements in planning and design of future projects. 

 
• Early restoration projects were not planned and designed following a rigorous methodology that 

clearly established the linkage between design decisions and predictions of how the site would 
evolve to meet restoration objectives. This has sometimes made it difficult to assess performance 
in a way that would help us improve design decisions. 

 
• Some early restoration projects were based on goals for developing suitable habitat for a 

particular target species. Overall project objectives should be clear at the outset with due 
consideration given to the needs of other target species and the marsh as a part of the whole 
ecosystem. 

 
• Although there has been more than three decades of restoration experience in San Francisco Bay, 

and more than ten projects have been systematically monitored, we still have little experience of 
how large, deeply subsided restoration sites will perform. 

 
• Almost all the restoration sites around San Francisco Bay have had most of all types of their 

transition zone removed or used for dikes or paths. Habitat values and other functions of the 
transition zone, such as sediment filtration, have not been well studied. Likewise, buffers have not 
been well-studied to determine an optimum width for varying urban or rural conditions or for 
differing functions such as water quality protection or disturbance. 
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• Apart from land acquisition, the largest restoration cost is usually earth moving. Many design 
decisions have significant grading cost implications yet are based on very limited data and 
analysis. 

 
• Recreating historic wetland landscapes and functions on restoration sites is often constrained by 

the legacy of past human interventions as well as long-term changes in physical processes. These 
include: levees, property boundaries, subsidence, and sea level rise. 

 
• Care needs to be exercised in the use of vertical datums around the Bay given the degree of 

subsidence and tectonic movement in the area. 
 
5.2 RECOMMENDATIONS 
 
There is a significant opportunity to continue to improve design decisions by incorporating explicit 
adaptive management experiments within future restoration projects. These experiments can address 
uncertainties in project design that significantly effect cost, feasibility, and ecologic performance.  These 
uncertainties include for example: 
 

• The rate of evolution of a subsided site to a mature marshplain. 
 
• The importance of the size of tidal channels within the marsh to support estuarine fish. 
 
• The degree to which internally generated wind waves effect sediment dynamics and vegetation 

colonization. 
 

• The evolution and functioning of tidal pannes at the marsh margin. 
 
• The rate of natural establishment for a full range of salt marsh plant species. 

 
• The impact of exotic species on tidal marsh habitat for a range of species. 

 
Useful adaptive management experiments that should be incorporated in future restoration projects 
include: 
 

• Examine the tradeoff between the amounts of fill required in a subsided site and the rate of 
evolution of desired wetland functions. 

 
• Predict more accurately the rate of evolution of wetland form and function for different erosional 

and sedimentary environments that take into account consolidation, organic accretion, future sea 
level rise, changes in sediment budget, and changes in estuarine sediment dynamics. 
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• Assess more completely the functional differences between restoring marshes of different ages, as 
well as the tradeoffs between subtidal, intertidal mudflat, and vegetated marsh habitats in an 
evolving system. 

 
• Design improvements such as the size and spacing of wave breaks, cost effective ways to create 

channel systems in dredged materials, outboard channel excavation requirements, or use of 
offshore marshes to prevent levee erosion. 

 
• Investigate the role of vegetation in reducing wave energy, erosion, and resuspension. 

 
• Understand the benefits of grading more heterogeneous habitat within the site—particularly 

integrating transitional wetland/upland habitat in the site design. 
 

• Understand the requirements of plants and the use of soil amendments that enable successful 
planting programs to occur where appropriate. 

 
• Develop techniques for controlling aggressive non-native plants that limit or replace native 

species. 
 

• Better understand the effect of human activities on wildlife and develop strategies to protect the 
wildlife. 

 
• Develop better means to inventory endangered wildlife species such as the harvest mouse and 

strategies to enhance the extent and quality of their habitat. 
 
Restoration practice is an applied science that is now maturing. We now understand tidal wetlands as vital 
components in a larger estuarine ecosystem that is continually evolving in response to human and natural 
physical processes and that this context has to be taken into account if we are to achieve sustainable long-
term benefits from restoration. We also now perceive that many restoration projects are best planned and 
designed as multi-objective projects that integrate social and ecologic objectives in a rigorous, explicit, 
planning methodology. This allows us to objectively assess performance by monitoring pre-selected 
indicators. In this way, we can continue to improve our design decisions based on experience and, 
sometime in the future, produce an updated version of this report. 
 



   

  
 

 
73

6. REFERENCES 
 
Acker, C. M., M. N. Josselyn and D. Pearson (2004). Soil conditions and potential soil amendments for 
use in restoring high intertidal areas in Southern California tidal marshes. Shore & Beach 72(3): 10-14. 
 
Allen, J. R. L. (2000). Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and 
southern North Sea coasts of Europe. Quaternary Science Review 19(12): 1155-1231. 
 
Atwater, B. F. and C. W. Hedel (1976). Distribution of seed plants with respect to tide levels and water 
salinity in the natural tidal marshes of the northern San Francisco Bay estuary, California. U.S. 
Geological Survey Open-File Series 76-389, U.S. Geological Survey, Menlo Park, CA. 
 
Atwater, B. F., S. G. Conard, J. N. Dowden, C. W. Hedel, R. L. MacDonald and W. Savage (1979). 
History, landforms, and vegetation of the Estuary’s tidal marshes. In San Francisco Bay: the Urbanized 
Estuary; Investigations into the Natural History of San Francisco Bay and Delta with Reference to the 
Influence of Man., edited by T. J. Conomos, A. E. Leviton and M. Berson. Pacific Division of the 
American Association for the Advancement of Science, San Francisco, CA. 347-385.  
 
Baye, P. R., P. M. Faber and B. Grewell (2000). Tidal marsh plants of the San Francisco Estuary. In 
Baylands Ecosystem Species and Community Profiles: Life Histories and Environmental Requirements of 
Key Plants, Fish, and Wildlife, edited by P. R. Olofson. San Francisco Bay Area Wetlands Ecosystem 
Goals Project. U.S. Environmental Protection Agency, San Francisco, CA and San Francisco Bay 
Regional Water Quality Control Board, Oakland, CA. 
 
Baye, P. R. (2004). Personal communication. 
 
BCDC (2001a). Public Access and Wildlife Compatibility Report. San Francisco Bay Conservation and 
Development Commission, San Francisco, CA. 
 
BCDC (2001b). Public Access Design Guidelines for the San Francisco Bay Plan, Bay Conservation and 
Development Commission, San Francisco, CA. 
 
Beeftink, W. G. and J. Rozema (1988). The nature and functioning of salt marshes. In Pollution of the 
North Sea: An assessment, edited by S. W., B. L. Bayne, E. K. Duursma and U. Forstner. Berlin, 
Germany. Springer: 59-87. 
 
Bertness, M. D. (1991). Interspecies interactions among high marsh perennials in a New England salt 
marsh. Ecology 72(1): 125-137. 
 
Boyer, K. E., P. Fong, R. R. Vance and R. E. Ambrose (2001). Salicornia virginica in a Southern 
California salt marsh: seasonal patterns and a nutrient-enrichment experiment. Wetlands 2(1): 315-326. 
 



   

  
 

 
74

CALFED (2000). Ecosystem Restoration Program Plan: Strategic Plan for Ecosystem Restoration.  
CALFED Bay –Delta Program, Sacramento, CA. 
 
CSCC and USFWS (2003). San Francisco Estuary Invasive Spartina Project: Spartina Control Program, 
Final Programmatic EIS/EIR. California State Coastal Conservancy and U.S. Fish and Wildlife Service, 
Oakland, CA. 
 
Callaway, J. C., G. Sullivan and J. B. Zedler (2003). Species-rich plantings increase biomass and nitrogen 
accumulation in a wetland restoration experiment. Ecological Applications 13(6): 1626-1639. 
 
Callaway, R. M. and C. S. Sabraw (1994). Effects of variable precipitation on the structure and diversity 
of a California salt marsh community. Journal of Vegetation Science 5: 433-438. 
 
Collins, J. N. (1991). Guidelines for Tidal Reduction of Mosquito Sources. Prepared in cooperation with 
Contra Costa Mosquito Abatement District, Concord, CA. 
 
Collins, L. M., J. N. Collins and L. B. Leopold (1987). Geomorphic processes of an estuarine tidal marsh: 
preliminary results and hypotheses. In International Geomorphology 1986 Part I, edited by V. Gardner: 
John Wiley and Sons, Ltd., London, United Kingdom: 1049-1072. 
 
Cornu, C. E. and S. Sadro (2002). Physical and functional responses to experimental marsh surface 
elevation manipulation in Coos Bay’s South Slough. Restoration Ecology 10(3): 474-486. 
 
Craft, C. B. (1997). Dynamics of nitrogen and phosphorous retention during wetland ecosystem 
succession. Wetlands Ecology and Management 4: 177-187. 
 
Craft, C. B. (2003). The pace of ecosystem development of constructed Spartina alterniflora marshes. 
Ecological Applications 13(5): 1417-1432. 
 
Craft, C. B., S. W. Broome and C. L. Campbell (2002). Fifteen years of vegetation and soil development 
following brackish-water marsh creation. Restoration Ecology 10: 248-258. 
 
Eisma, D. and K. S. Dijkema (1997). The influence of salt marsh vegetation on sedimentation. In 
Intertidal Deposits, edited by D. Eisma. CRC Press, Boca Raton, FL: 403-414. 
 
EPA (1998). An SAB report: ecological impacts and evaluation criteria for the use of structures in marsh 
management. Environmental Protection Agency, Washington DC: 65 pp. 
 
Evens, J. (2004). Personal communication. 
 
Faber, P. and J. Swanson, (1979). Personal observations. 
 



   

  
 

 
75

French, J. R. (1993). Numerical simulation of vertical marsh growth and adjustment to accelerated sea-
level rise, North Norfolk, UK. Earth Surface Processes and Landforms 18: 63-81. 
 
French, J. R. and D. R. Stoddart (1992). Hydrodynamics of salt marsh creek systems: Implications for 
marsh morphological development and material exchange. Earth Surfaces Processes and Landforms 17: 
235-252. 
 
Friedrichs, C. T. and J. E. Perry (2001). Tidal salt marsh morphodynamics: a synthesis. Journal of 
Coastal Research (Special Issue 27): 7-37. 
 
Garbisch, E. W., P. B. Woller and R. J. McCallum (1975). Salt marsh establishment and development. 
U.S. Army Corps of Engineers Coastal Engineering Research Center, Fort Belvoir, VA: 110 pp. 
 
Goals Project (1999). Baylands Ecosystem Habitat Goals: A report of habitat recommendation, prepared 
by the San Francisco Bay Area Wetlands Ecosystem Goals Project. U.S. Environmental Protection 
Agency, San Francisco, CA and San Francisco Bay Regional Water Quality Control Board, Oakland, CA. 
 
Goals Project (2000). Baylands Ecosystem Species and Community Profiles: Life Histories and 
Environmental Requirements of Key Plants, Fish, and Wildlife, edited by P. R. Olofson. San Francisco 
Bay Area Wetlands Ecosystem Goals Project. U.S. Environmental Protection Agency, San Francisco, CA 
and San Francisco Bay Regional Water Quality Control Board, Oakland, CA. 
 
Grossinger, R. M. (1995). Historical evidence of freshwater effects on the plan form of tidal marshlands 
in the Golden Gate Estuary. Masters Thesis, Department of Marine Sciences, University of California, 
Santa Cruz, Santa Cruz, CA. 130 pp. 
 
Harvey, H. T. and P. B. Williams (1983). California coastal salt marsh restoration design. In Proceedings 
of the Third Symposium on Coastal and Ocean Management. (Coastal Zone 83). American Society of 
Civil Engineers, New York, NY. 
 
Hinde, H. P. (1954). The vertical distribution of salt marsh phanerogams in relation to tide levels. 
Ecological Monographs 24: 209-225. 
 
Hopkins, D. and V. Parker (1984). A study of the seed bank of a salt marsh in Northern San Francisco 
Bay. American Journal of Botany. 71(3): 348-355. 
 
IPCC (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third 
Assessment Report of the Intergovernmental Panel on Climate Change, edited by J.T. Houghton, et al. 
Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY. 
 
Josselyn, M. (1982). Wetland Restoration and Enhancement in California. California Sea Grant, La Jolla, 
CA. 110 pp. 
 



   

  
 

 
76

Josselyn, M. (2004).  Personal communication. 
 
Josselyn, M. and J. W. Bucholz (1984). Marsh Restoration in San Francisco Bay: A Guide to Design and 
Planning. Technical Report No.3, Tiburon Center for Environmental Studies, San Francisco State 
University, San Francisco, CA. 104 pp. 
 
Karr, J. R. (1993). Measuring biological integrity: lessons from streams. In Ecological Integrity and the 
Management of Ecosystem, edited by J. K. S. Woodley, and G. Francis. St. Lucie Press, Delray Beach, 
FL. 
 
Keer, G. H. and J. B. Zedler (2002). Salt marsh canopy architecture differs with the number and 
composition of species. Ecological Applications 12: 456-473. 
 
Knutson, P. L. (1988). Role of coastal wetlands in energy dissipation and shore protection. In Ecology of 
Wetlands, edited by D. D. Hook. Timber Press , Portland, OR: 161-174. 
 
Knutson, P. L., H. H. Allen and J. W. Webb (1990). Guidelines for vegetative erosion control on wave-
impacted coastal dredged material sites. U.S. Army Corps of Engineers, Waterways Experimental 
Station, Dredging Operations Technical Support Program, Vicksburg, MS. 
 
Krone, R. B. (1979). Sedimentation in the San Francisco Bay System. In San Francisco Bay: The 
Urbanized Estuary, edited by T. J. Conomos. Pacific Division, American Association for the 
Advancement of Science, San Francisco, CA. 
 
Krone, R. B. (1987). A method for simulating historic marsh elevations. In Proceedings of Specialty 
Conference on Quantitative Approaches to Coastal Sediment Processes (Coastal Sediments 1987). New 
Orleans, LA. 
 
Lindau, C. W. and L. R. Hossner (1981). Substrate characterization of an experimental marsh and three 
natural marshes. Soil Science Society of America Journal 45: 1171-1176. 
 
LTMS (1996). Long-Term Management Strategy (LTMS) for the Placement of Dredged Material in the 
San Francisco Bay Region. Final EIS. Prepared for LTMS Management Committee by the U.S. Army 
Corps of Engineers, U.S. Environmental Protection Agency, San Francisco Bay Conservation and 
Development Commission, San Francisco Bay Regional Water Quality Control Board, and State Water 
Resources Control Board. San Francisco, CA. 
 
Mall, R. E. (1969). Soil-Water-Salt Relationships of Waterfowl Food Plants in the Suisun Marsh of 
California. California Department of Fish and Game, Sacramento, CA. 
 
Maser, C. and J. R. Sedell (1994). From the Forest to the Sea: The Ecology of Wood in Streams, Rivers, 
Estuaries, and Oceans. St. Lucie Press, Delray Beach, FL. 
 



   

  
 

 
77

Moeller, I., T. Spencer and J. R. French (1996). Wind wave attenuation over saltmarsh surfaces: 
preliminary results from Norfolk, England. Journal of Coastal Research 12(4): 1009-1016. 
 
Newcombe, C. L. and H. L. Mason (1972). An Environmental Inventory of the North San Francisco Bay-
Stockton Ship-Channel Area, Part 2: North San Francisco Bay to Point Edith. San Francisco Bay Marine 
Research Center, Inc., Lafayette, CA. 
 
Newcombe, C. L., J. H. Morris, P. L. Knutson and C. S. Gorbics (1979). Bank erosion control with 
vegetation, San Francisco Bay, California. U.S. Army Corps of Engineers Coastal Engineering Research 
Center, Fort Belvoir, VA. 
 
Nichols, F. H., J. E. Cloern, S. N. Luoma and D. H. Peterson (1986). The modification of an estuary. 
Science 231: 567-573. 
 
Nichols, M. M. and J. D. Boon (1994). Sediment transport processes in coastal lagoons. In Coastal 
Lagoon Processes, edited by B. Kjerfve. Elsevier Science, Amsterdam, The Netherlands: 157-220. 
 
Orr, M. K., S. J. Crooks and P. B. Williams (2003). Will restored tidal marshes be sustainable? In Issues 
in San Francisco Estuary Tidal Wetlands Restoration, edited by L. R. Brown, San Francisco Estuary and 
Watershed Science. Vol. 1, Issue 1, Article 5. 
 
Pearcy, R. W. and S. L. Ustin (1984). Effects of salinity on growth and photosynthesis of three California 
tidal marsh species. Oecologia 62: 68-73. 
 
Pennings, S. C. and R. M. Callaway (1992). Salt marsh plant zonation: the relative importance of 
competition and physical factors. Ecology 73(2): 681-690. 
 
Pethick, J. S. (1981). Long-term accretion rates on tidal salt marshes. Journal of Sedimentary Petrology 
51(2): 571-577. 
 
Phleger, F. B. (1967). Marsh foraminiferal patterns, Pacific Coast of North America. Anales Instituto 
Biologiam, Universidad Nacional Autonoma de Mexico, Seria Ciencias Mer Limnologia 38: 11-30. 
 
PWA (1988). Wildcat Creek Marsh Enhancement Plan. Prepared for the Wildcat Creek Design Team by 
Philip Williams & Associates, Ltd., San Francisco, CA. 
 
PWA (1991). Hydrologic Basis for the Preliminary Design for the Sonoma Baylands Enhancement 
Project. Prepared for the California State Coastal Conservancy, Oakland, CA., by Philip Williams & 
Associates, Ltd., San Francisco, CA. 
 
PWA (1999). Re-evaluation of the Internal Peninsula Design in the Hamilton Wetland Restoration Plan. 
Prepared for the California State Coastal Conservancy, Oakland, CA., by Philip Williams & Associates, 
Ltd., San Francisco, CA. 



   

  
 

 
78

 
PWA (2004). Crissy Field Expansion Study. Prepared for the Golden Gate National Recreation Area, San 
Francisco, CA, by Philip Williams & Associates, Ltd., San Francisco, CA. 
 
PWA and LSA Associates (1998). Conceptual Design for Tidal Wetland Restoration For the Hamilton 
Army Airfield Focused Feasibility Study, Volume II: Technical Appendices. Prepared for the IT 
Corporation, by Philip Williams & Associates, Ltd., San Francisco, CA. 
 
PWA, W. R. Associates and S. S. P. Associates (2002a). Cooley Landing Salt Pond Restoration Baseline 
and Year 1 Monitoring Report. Prepared for Aventis CropScience USA and Midpeninsula Regional Open 
Space District, by Philip Williams & Associates, Ltd., San Francisco, CA. 
 
PWA, LSA Associates and LifeScience (2002b). Development of Seasonal Wetland Design Criteria for 
Hamilton Army Airfield Wetland Restoration Project, Marin County, California. Prepared for U.S. Army 
Corps of Engineers, San Francisco District, by Philip Williams & Associates, Ltd., San Francisco, CA. 
 
PWA, W. R. Associates and S. S. P. Associates (2004). Cooley Landing Sal Pond Restoration Year 3 
Monitoring Report. San Francisco, CA. Prepared for StarLink Logistics and Mid-Peninsula Regional 
Open Space District, by Philip Williams & Associates, Ltd., San Francisco, CA. 
  
PWA and Sycamore & Associates (2004). Annual Monitoring Report #1: Martinez Regional Shoreline 
Salt Marsh Enhancement Project Phases 1 and 2. Prepared for California Department of Transportation, 
The City of Martinez, East Bay Regional Park District, and Parsons, by Philip Williams & Associates, 
Ltd., San Francisco, CA. 
 
Race, M. S. and D. R. Christie (1982). Coastal zone development: mitigation, marsh creation, and 
decision making. Environmental Management 6: 317-328. 
 
Russell, P. J., T. J. Flowers and M. J. Hutchings (1985). Comparison of niche breadths and overlaps of 
halotypes on salt marshes of differing diversity. Vegetatio 61: 171-178. 
 
Sanderson, E. W., S. L. Ustin and T. C. Foin (2000). The influence of tidal channels on the distribution of 
salt marsh plant species in Petaluma Marsh, CA, USA. Plant Ecology 146: 29-41. 
 
Sanderson, E. W., T. C. Foin and S. L. Ustin (2001). A simple empirical model of salt marsh plant spatial 
distributions with respect to a tidal channel network. Ecological Modeling 139: 293-307. 
 
Schoellhamer, D. H. (1996). Factors affecting suspended-solids concentrations in South San Francisco 
Bay, California. Journal of Geophysical Research 101(C5): 12087-12095. 
 
Schoellhamer, D. H., G. G. Shellenbarger, N. K. Ganju, J. A. Davis and L. J. McKee (2003). Sediment 
dynamics drive contaminant dynamics. In 2003 Pulse of the Estuary. San Francisco Estuary Institute, 
Oakland, CA. 



   

  
 

 
79

 
SFEI (1999). EcoAtlas. San Francisco Estuary Institute, Oakland, CA. 
www.ecoatlas.org 
 
Shellhammer, H. S. (1982). Reithrodontomys raviventris. Mammalian Species 169(1-3). 
 
Shellhammer, H. S. (2000). Salt marsh harvest mouse. . In Baylands Ecosystem Species and Community 
Profiles: Life Histories and Environmental Requirements of Key Plants, Fish, and Wildlife, edited by P. 
R. Olofson. San Francisco Bay Area Wetlands Ecosystem Goals Project. U.S. Environmental Protection 
Agency, San Francisco, CA and San Francisco Bay Regional Water Quality Control Board, Oakland, CA. 
 
Shellhammer, H. S. (2004). Personal communication. 
 
Siegel, S. W. (1998). Petaluma River Marsh Monitoring Report 1994 to 1998. Prepared for the Sonoma 
Land Trust, Santa Rosa, CA, by Wetland and Water Resources, San Rafael, CA. 
 
Siegel, S. W. (2002). Slough channel network and marsh plain morphodynamics in a rapidly accreting 
tidal marsh restoration on diked, subsided bayland San Francisco Estuary, California. Doctoral Thesis, 
Department of Geography, University of California, Berkeley, Berkeley, CA.  
 
Steel, T. J. and K. Pye (1997). The development of salt marsh tidal creek networks: Evidence from the 
UK. In Proceedings of the Canadian Coastal Conference.  Canadian Coastal Science and Engineering 
Association, Guelph, Ontario, Canada. 
 
Steere, J. T. and N. Schaefer (2001). Restoring the Estuary: An Implementation Strategy for the San 
Francisco Bay Joint Venture. San Francisco Bay Joint Venture, Oakland, CA: 124 pp. 
 
USACE (1984). Shore Protection Manual. U.S. Army Corps of Engineers, Waterways Experimental 
Station, Coastal Engineering Research Center, Vicksburg, MS. 
 
USACE (2000). Corpscon, Geospatial Applications Branch, Topographic Engineering Center, U.S. Army 
Engineer Research and Development Center. 
http://crunch.tec.army.mil/software/corpscon/corpscon.html 
 
Vivian-Smith, G. (1997). Microtopographic heterogeneity and floristic diversity in experimental wetland 
communities. Journal of Ecology 85: 71-82. 
 
Watson, E. B. (2004). Changing elevation, accretion, and tidal marsh plant assemblages in a South San 
Francisco Bay tidal marsh. Estuaries 27(4): 684-698. 
 
Williams, P. B. (1986). Hydrology in coastal wetland restoration design. In Proceedings of National 
Wetland Symposium: Mitigation of Impacts and Losses, New Orleans, LA. 
 



   

  
 

 
80

Williams, P. B. (2001a). Is there enough sediment? In Proceedings of 5th Biennial State of the Estuary 
Conference, San Francisco Estuary: Achievements, Trends, and the Future, San Francisco, CA. 
 
Williams, P. B. (2001b). Restoring physical processes in tidal wetlands. Journal of Coastal Research 
(Special Issue 27): 149-161. 
 
Williams, P. B. and J. L. Florsheim (1994). Designing the Sonoma Baylands Project. California Coast & 
Ocean 10(2): 19-25. 
 
Williams, P. B. and P. M. Faber (2001). Salt marsh restoration experience in the San Francisco Bay 
Estuary. Journal of Coastal Research (Special Issue 27): 203-211. 
 
Williams, P. B. and M. K. Orr (2002). The physical evolution of restored breached levee salt marshes in 
the San Francisco Bay Estuary. Restoration Ecology 10: 527-542. 
 
Williams, P. B., M. K. Orr and N. J. Garrity (2002). Hydraulic geometry: A geomorphic design tool for 
tidal marsh channel evolution in wetland restoration projects. Restoration Ecology 10(3): 577-590. 
 
WRMP (2003). Wetlands Project Tracker. 
http://www.wrmp.org 
 
WWR (1998). Petaluma River Marsh Monitoring Report: 1994 to 1998. Prepared for the Sonoma Land 
Trust, Santa Rosa, CA, by Wetland and Water Resources, San Rafael, CA. 
 
WWR (2003). Petaluma River Marsh (Carl’s Marsh) Monitoring Report #2: May 1998 to Fall 2002, 
Project Years 5-8. Prepared for the California State Coastal Conservancy, Oakland, CA and Sonoma 
Land Trust, Santa Rosa, CA, by Wetland and Water Resources, San Rafael, CA. 
 
Zedler, J. B., Ed. (2000). Handbook for Restoring Tidal Wetlands. CRC Press, Boca Raton, LA. 
 
Zedler, J. B. and J. C. Callaway (1999). Tracking wetland restoration: do mitigation sites follow desired 
trajectories? Restoration Ecology 7(1): 69-73. 
 
Zedler, J. B. and J. C. Callaway (2003). Adaptive restoration: A strategic approach for integrating 
research into restoration projects. In Managing for Healthy Ecosystems, edited by D. J. Rapport, W. L. 
Lasley, D. E. Rolston, N. O. Nielsen, C. O. Qualset and A. B. Damania. CRC Press, Boca Raton, FL. 
 



   

  
 

 
81

7. LIST OF PREPARERS 
 
This report was prepared by the following PWA staff: 
 
Philip B. Williams, P.E., Ph.D., Principal 
Jeremy P. Lowe, B.S., Associate Principal 
Nicholas J. Garrity, M.S., Associate 
Catherine Lee, Production 
Rebecca Wilson, Production 
Brad Evans, Graphics 
 
and 
 
Phyllis M. Faber, Phyllis Faber and Associates 



   

  
 

 
82

8. ACKNOWLEDGEMENTS 
 
This report was sponsored by and prepared for: 
 
The Bay Institute, with funding from the 
California State Coastal Conservancy (Safe Neighborhood Parks, Clean Water, Clean Air, and Coastal 
Protection Bond Act of 2000) 
 
The 2001-2004 monitoring season was funded by: 
 
Fred Gellert Family Foundation 
Marin Community Foundation 
San Francisco Foundation 
 
The Science Review Panel for this report included: 
 
Peter Baye 
John Callaway, University of San Francisco 
Steve Granholm, LSA Associates 
Fred Nichols 
Stuart Siegel, Wetlands and Water Resources 
Si Simenstad, University of Washington 
 
Other monitoring referenced in this report was funded by: 
 
CALTRANS 
California State Coastal Conservancy 
California Department of Fish and Game  
Marin Audubon Society 
Marin Community Foundation 
Port of Oakland 
San Francisco Foundation 
Save San Francisco Bay Association 
The Bay Institute 
US Fish and Wildlife Service 
US Army Corps of Engineers, San Francisco District  
 
Monitoring that informed this report was performed by: 
 
Environmental Data Solutions 
HT Harvey and Associates  
LSA Associates 
SS Papadopulos & Associates 



   

  
 

 
83

Wetlands Research Associates 
Wetlands and Water Resources 
University of San Francisco  
University of Washington 
US Army Corps of Engineers, San Francisco District 


